
Challenge Accepted: Python Packaging
Infrastructure for the RISCV64 Ecosystem

Trevor Gamblin1, Mark Ryan2 and Julien Stephan1

1BayLibre Inc.
2Rivos Inc.

Abstract

As the RISC-V ecosystem grows with new platforms and higher performance, a key area of interest is its
applicability towards scientific computing, data analysis, and machine learning. On other architectures such
as ARM, these areas are already well-supported thanks to broad availability of binaries for critical packages
such as NumPy, pandas, and PyTorch, but with RISC-V these are largely unavailable. The problem is further
compounded by the challenge of building such packages manually, where even foundational examples such as
NumPy take a prohibitively long time to build from source on commonly-available hardware, in addition to being
prone to build errors and dependency chains that lead to long hours of sorting through confusing stack traces.
The RISE project is tackling this problem by building, testing, deploying, and maintaining binaries for a selection
of these packages. This creates a path forward for developers that wish to leverage current and upcoming RISC-V
platforms for specialized research and industry applications.

Introduction

The Python “wheel”, defined in [1], is the standard
distribution format for Python packages. For many
major Python projects whose modules consist of com-
piled code (for example, from C/C++), these must
be built and tested on a per-architecture basis. How-
ever, while these projects distribute wheels for various
architectures via online repositories such as PyPI[2],
RISCV64 is currently unsupported. As a result, users
who attempt to install packages on RISCV64 devices
may find that the same applications which work seam-
lessly on other platforms do not run because one or
more of the dependencies that they rely on cannot be
installed.

Manual Build Challenges

Developers seeking to make use of popular Python
modules used in scientific computing such as NumPy
may choose to work around this situation by compiling
them from source. Such projects’ documentation is
typically comprehensive enough that a user can initial-
ize a build of their target project quickly. However, a
more pressing problem soon presents itself: the time
required to complete a build is prohibitive. The ex-
act duration varies significantly depending on target
hardware (or, alternatively, if using an emulator such
as QEMU); a test run performed by the author for
the NumPy project (commit cc5851e654) took approx-
imately 20 minutes on a VisionFive V2 board running
Ubuntu 24.04.1 LTS.

A 20-minute build time for the NumPy module on its
own is not insurmountable, but considering that it is a

core dependency for many other modules with similar
build processes, the prospect that simply installing the
requirements for developing data science applications
will require hours of time reveals the problem inherent
in this manual build approach. Furthermore, even if a
developer were to undertake this challenge, there are
additional complications:

1. Correctly identifying and installing the right ver-
sions of compilers and libraries required for build-
ing a specific package version is nontrivial;

2. The outputs must be distributed manually to
fellow project members or other users (if they
don’t also perform manual builds);

3. The burden of repeating this process when new
versions with additional features and bugfixes are
released also falls on the individual user.

If RISCV64 platforms are to be competitive choices
for such applications, this situation must be remedied.
This is where the RISE Project comes in.

Developing New Packaging
Infrastructre

Until the architecture can be formally supported by
the Python ecosystem, an alternative solution for dis-
tributing RISCV64 wheels is necessary. By leveraging
continuous integration and mirrored versions of tar-
geted package repositories via GitLab, architecture-
specific adjustments for wheel distribution tooling such
as cibuildwheel[3] and manylinux[4], and emulated
RISCV64 systems, binaries are built to address this
deficit. These binaries are then installable with pip[5]
by specifying a custom package index URL.

RISC-V Summit Europe, Paris, 12-15th May 2025 1



Current Python Ecosystem
Support

As of submission, the list of packages available in the
RISE Project repository[6] are as follows:

Table 1: RISE Python Packages With RISCV64 Support

Package Latest Version

argon2-cffi-bindings 21.2.0
cmake 3.31.4
cffi v1.17.1
contourpy 1.3.1
cryptography 43.0.1
httptool 0.6.4
kiwisolver 1.4.7
lintrunner v0.12.7
lxml lxml-5.3.0
markupsafe 3.0.2
maturin v1.8.1
msgpack v1.1.0
patchelf v0.17.2.1
matplotlib 3.9.2
nh3 v0.2.18
ninja 1.11.1.3
numpy v2.2.2
optree v0.12.1
pandas v2.2.2
Pillow 11.1.0
psutil release-5.9.8
pydantic-core v2.27.2
pyyaml 6.0.2
pyzmq 26.2.0
rpds-py 0.21.0
safetensors v0.5.2
scipy v1.12.0
sentencepiece v0.2.0
tlparse v0.3.25
tornado 6.4.2

Methodology

We used a variety of techniques to achieve the support
listed in Table 1, crafting patches and customized CI
pipeline branches where necessary for new versions.
Build systems consisted of containerized RISCV64
environments emulated using [7] atop x86-64 AMD
EPYC systems with 32 cores and 128GB of RAM,
running Ubuntu 24.04 LTS. Packages were built via
methods mirroring those in the upstream repositories’
CI workflows, deviating mainly to limit RISE’s builds
to compatibility with Python versions 3.10 through
3.13. Package test suites were included before upload-
ing binaries as a rule, with exceptions being disabled

in scenarios such as when tests accessed external re-
sources that were unavailable and/or irrelevant for
RISCV64 platforms.

Adding support for Python packages on RISCV64
varied significantly in effort required. We found that
there are three general levels of complexity involved:

1. Easy: The package requires a version update to
CI scripts, followed by a rebuild.

2. Medium: Adjustment and patching of build
backends, environment, etc. must also be per-
formed.

3. Hard: Significant overhaul of existing infrastruc-
ture and/or careful analysis of test results is nec-
essary.

Future Work

Expansion of the Python ecosystem on RISCV64 is
ongoing, with support currently planned for 26[8] new
packages in addition to continuing updates and builds
of those in Table 1. By undertaking this challenge, we
are removing the manual effort required to make use of
these packages from developers, as their accessibility is
now similar to that of other more established architec-
tures. This will make adoption of RISC-V platforms
in scientific computing, machine learning, educational,
and hobbyist applications easier and more appealing
as the hardware ecosystem evolves.

References

[1] Python.org. Binary Distribution Format. url: https://
packaging . python . org / en / latest / specifications /
binary- distribution- format/#binary- distribution-
format.

[2] pypi.org. PyPI Platform Support. url: https://github.
com/pypi/warehouse/blob/main/warehouse/forklift/
legacy.py#L158-L169.

[3] Python Packaging Authority. cibuildwheel. url: https:
//github.com/pypa/cibuildwheel.

[4] Python Packaging Authority. manylinux. url: https://
github.com/pypa/manylinux.

[5] Python Packaging Authority. pip. url: https://github.
com/pypa/pip.

[6] RISE. RISE Project Python Repository. url: https://
gitlab.com/riseproject/python.

[7] multiarch. qemu-user-static. url: https://github.com/
multiarch/qemu-user-static.

[8] RISE. RISE wheel builder issue list. url: https://gitlab.
com/riseproject/python/wheel_builder/-/issues.

2 RISC-V Summit Europe, Paris, 12-15th May 2025

https://packaging.python.org/en/latest/specifications/binary-distribution-format/#binary-distribution-format
https://packaging.python.org/en/latest/specifications/binary-distribution-format/#binary-distribution-format
https://packaging.python.org/en/latest/specifications/binary-distribution-format/#binary-distribution-format
https://packaging.python.org/en/latest/specifications/binary-distribution-format/#binary-distribution-format
https://github.com/pypi/warehouse/blob/main/warehouse/forklift/legacy.py#L158-L169
https://github.com/pypi/warehouse/blob/main/warehouse/forklift/legacy.py#L158-L169
https://github.com/pypi/warehouse/blob/main/warehouse/forklift/legacy.py#L158-L169
https://github.com/pypa/cibuildwheel
https://github.com/pypa/cibuildwheel
https://github.com/pypa/manylinux
https://github.com/pypa/manylinux
https://github.com/pypa/pip
https://github.com/pypa/pip
https://gitlab.com/riseproject/python
https://gitlab.com/riseproject/python
https://github.com/multiarch/qemu-user-static
https://github.com/multiarch/qemu-user-static
https://gitlab.com/riseproject/python/wheel_builder/-/issues
https://gitlab.com/riseproject/python/wheel_builder/-/issues

	Introduction
	Manual Build Challenges
	Developing New Packaging Infrastructre

	Current Python Ecosystem Support
	Methodology
	Future Work

