
Towards Open-Source and Automatic Performance
Characterization Hardware

Matthew Edwin Weingarten and Tanvir Ahmed Khan∗

Introduction

Performance characterization is the key to unlocking
efficient utilization of the underlying processing sys-
tem. Rapid developments in specialized computing
and hardware/software co-design make performance
characterization more challenging — as the underlying
hardware changes, so must the performance monitor-
ing hardware and the accompanying performance mod-
els. CPU vendors have successfully popularized the
top-down micro-architectural analysis (TMA) method-
ology that is effective in identifying true bottlenecks
in a processor while abstracting away the hardware
implementation [1]. Unfortunately, researchers and
practitioners are often limited to open-source RISC-V
processors that lack hardware support for TMA, or
any other systematic performance characterization
methodology. Even the simple scalar in-order Rocket-
Core [2] has not implemented performance hardware
capable of providing enough information to support
TMA, let alone a more complex Out-of-Order (OoO)
and super scalar core like SonicBOOM [3]. Further-
more, the challenges of performance characterization
are compounded by the ever-increasing heterogeneity
and specialization of hardware [4], and a wholistic per-
formance characterization methodology for an entire
System-on-Chip (SoC) remains open-ended. Overall,
the lack of hardware supported performance characteri-
zation hamstrings the ability to evaluate new hardware
designs, for performance tooling to adapt to modern
hardware, or even programmers efficiently exploit the
target hardware.

In this work, our aim is to close this gap and move
towards open-source implementation of performance
characterization methodology by adding hardware sup-
port for TMA on RocketChip and SonicBOOM. This
hardware support is added manually, with an under-
standing of the micro-architecture details, and our
next steps will be applying the manual approach to
heterogeneous compute and accelerators. We hope to
extract key insights from the manual approach and
automate this process, so that performance monitoring
can keep up, and even help improve on, the rapid de-
velopment of hardware. Concretely, this work makes
the following contributions:
• First open-source PMU support for TMA on
∗Columbia University
Corresponding Author: matthew.weingarten@columbia.edu

Figure 1: RocketCore pipeline and sources of pipeline
stalls marked with numbers 1 - 12 .

RISC-V.
• An analysis showing that the current performance

monitoring events on both RocketCore and Sonic-
BOOM lack critical information for performance
characterization.

• Identification and addition of missing key perfor-
mance events alongside a new top-level TMA model.
We show that this model requires merely three new
performance events for both RocketCore and Sonic-
BOOM respectively.

• Evaluation of TMA with our new PMU events
by characterizing widely-used benchmarks such as
EEMBC CoreMark [5] and Dhrystone [6].

• Evaluation infrastructure to measure power and area
overhead of new performance events, showing that
these are below %4.

Lack of hardware support

The goal of this section is to illustrate that the cur-
rent Performance Monitoring Unit (PMU) events on
RocketCore lack the ability to properly identify the
underlying bottlenecks. Assume we have a perfor-
mance critical application and we wish to identify
where in the RocketCore pipeline, highlighted in Fig-
ure 1, most of the inefficiencies occur — for example
classifying how many cycles are lost in the frontend

Figure 2: Existing frontend PMU events do not give
insight into the true frontend bound metric.

RISC-V Summit Europe, Paris, 12-15th May 2025 1

mailto:matthew.weingarten@columbia.edu


Figure 3: Top-level TMA breakdown on RocketCore.

of the processor. As of now, there are only two ex-
isting performance event that collect any information
regarding the frontend, namely I-Cache blocked and
I-Cache misses. However, critically, these events are
not enough to accurately reflect how cycles are lost in
the frontend. In Figure 2 we illustrate the relationship
between the existing event called I-Cache blocked and
our frontend bound metric, and clearly shows that
bottom-up performance events like cache misses do
not allow the model to pinpoint the precise bottleneck.

Proposed Events & Evaluation

To solve the issue demonstrated in Figure 2, we add an
event in the RocketCore pipeline at 2 in Figure 1 to
track the number of cycles lost because the instruction
buffer does not have valid instructions to pass to the
rest of the pipeline. More events are needed for deeper
levels of the TMA model to further pinpoint the root
cause. For brevity’s sake we do not cover the rest of
the events added, but a simple representation of the
RocketCore TMA classification is shown in Table 1,
where CRecover, and CInstrIssued, CFetchStall are all newly
added events.

Overall we have evaluated our TMA model on both
RocketCore in Figure 3 and SonicBOOM in Figure 4.
Furthermore, we have designed case studies to exam-
ine the accuracy of the new events and the associated
TMA model. For example, we run a custom micro-
benchmark with many compulsory branch mispredic-
tions, use the model to estimate the number of cycles
lost due to bad speculation (in this branch mispredic-
tions). Subsequently, we can validate the accuracy of
our performance model by checking if the performance

Table 1: TMA calculations with new Events

Top-level TMA

Retiring CRetired/ CTotal

BMiss CBrMiss/ (CBrMiss+ CFlushes+ CFence)

Bad spec ((CInstrIssued- CRetired) * BMiss+ CRecover) / CTotal

Frontend CFetchStall/ CTotal

Backend 1 - Frontend - Bad speculation

Figure 4: Top-level TMA breakdown on SonicBOOM with
core width of 4.

improvements of an if-conversion optimization pass,
that eliminates every single branch misprediction, can
be accurately predicted.

Future efforts

We have shown that open-source performance moni-
toring hardware fails to pinpoint root causes and bot-
tlenecks even on both RocketCore and SonicBOOM.
Enabling performance characterization for these cores,
our work helps researchers and practitioners evaluate
hardware and software optimizations for open-source
processors. As open-source support to profile and char-
acterize workloads is critical for efficient utilization of
next-generation hardware, in future, we will extend
this work to out-of-order super-scalar processors and
specialized accelerators. As a hardware becomes more
heterogeneous, we require a generalizable and ideally
automatic approach to performance characterization
and the hardware support that is required. As hard-
ware becomes more and more heterogeneous, we will
propose a generalizable yet automatic approach to
provide hardware support for performance characteri-
zation.

References

[1] Ahmad Yasin. “A top-down method for performance analy-
sis and counters architecture”. In: 2014 IEEE International
Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS). IEEE. 2014, pp. 35–44.

[2] Krste Asanovic et al. “The rocket chip generator”. In: EECS
Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2016-17 4 (2016), pp. 6–2.

[3] Jerry Zhao et al. “Sonicboom: The 3rd generation berkeley
out-of-order machine”. In: Fourth Workshop on Computer
Architecture Research with RISC-V. Vol. 5. 2020, pp. 1–7.

[4] Alon Amid et al. “Chipyard: Integrated design, simulation,
and implementation framework for custom socs”. In: IEEE
Micro 40.4 (2020), pp. 10–21.

[5] Shay Gal-On and Markus Levy. “Exploring coremark a
benchmark maximizing simplicity and efficacy”. In: The
Embedded Microprocessor Benchmark Consortium (2012).

[6] Alan R Weiss. “Dhrystone benchmark”. In: History,
Analysis, Scores and Recommendations, White Paper,
ECL/LLC (2002).

2 RISC-V Summit Europe, Paris, 12-15th May 2025


	Introduction
	Lack of hardware support
	Proposed Events & Evaluation
	Future efforts

