
A Flexible and Portable Performance Evaluation
Framework for Instruction Set Simulations

Conrad Foik1, Karan Kedia1, Robert Kunzelmann1,
Daniel Müller-Gritschneder2 and Ulf Schlichtmann1

1Technical University of Munich, 2TU Wien
conrad.foik@tum.de, daniel.mueller-gritschneder@tuwien.ac.at

Abstract

Simulation-based design space exploration plays a crucial part in the development of efficient processors for
modern embedded systems. Common tools in this context are performance simulators, but these usually inflexibly
target a single processor variant and cannot easily be combined with established simulation environments.
This paper presents a performance simulation framework that combines high accuracy and simulation speed
with high flexibility and quick integration into existing simulation environments. It consists of a trace-based
performance estimator, which can be adapted to new processor variants through code generation based on a
simple structural description of the microarchitecture. Applying our approach to the state-of-the-art CVA6
RISC-V application class processor shows an average relative error of 3.88% and an average simulation speed of
15 million instructions per second (MIPS) over the Embench benchmark suite.

Introduction

Modern embedded systems increasingly rely on highly
workload-tailored designs to meet ever stricter perfor-
mance and power requirements. Prominent examples
of such designs are application-specific instruction set
processors (ASIPs). However, to identify the optimal
solutions for such a processor from numerous design op-
tions, designers rely on early simulation-based software
profiling and design space exploration (DSE), resulting
in a new demand for fast and accurate simulators.

While the processor’s register transfer level (RTL)
description theoretically allows for cycle-accurate sim-
ulations, this description is typically too late available
in the design process for an effective DSE. In addi-
tion, RTL simulations are very slow, making them
unsuitable for DSE, which requires running numerous
simulations. A more suitable approach is the use of so-
called instruction set simulators (ISSs), which model
the processor’s behavior on the instruction set archi-
tecture (ISA) level. This increased level of abstraction
enables an ISS to run considerably faster than RTL
simulations while still correctly modeling the proces-
sor’s functional behavior. However, since an ISS does
not consider microarchitectural details, it cannot reli-
ably estimate the processor’s performance, which is a
crucial metric for a convincing DSE. To address this
limitation, several performance simulators have been
proposed in the literature. These simulators typically
combine the ISS approach with non-functional timing
models of the target processor’s microarchitecture to

This work was supported in part by the German Federal Min-
istry of Education and Research (BMBF) and ITEA within the
project GenerIoT under contract no. 01IS22084G

CorePerf
DSL

Code
Generator

Performance
Estimator

Monitor
Description

(.json)

Monitor
Generator

ISS Monitor
Target

Software Report

Instruction
Trace

Adjust Adjust

Figure 1: Performance evaluation framework (External
components in gray)

achieve a suitable trade-off between accurate perfor-
mance estimates and simulation speeds.

However, although a flexible adaptation to new pro-
cessor variants is essential for an effective DSE, most
performance simulators either target a single proces-
sor variant or compromise speed and accuracy. In
addition, current approaches are typically simulator-
specific, thus prohibiting the extension of established
simulation environments. In this paper, we, therefore,
present an accurate and fast performance simulation
framework, which offers both flexible adaptation to
new microarchitecture variants and quick integration
into existing simulation environments.

Simulation Framework

Fig. 1 presents our proposed simulation framework.
It comprises two main components: a performance
estimator and a code generator [1].

The performance estimator approximates the proces-
sor’s performance by considering the instruction trace
provided by an arbitrary ISS. Its estimation method
is based on as-soon-as-possible (ASAP) scheduling
of instructions on microarchitecture resources and is

RISC-V Summit Europe, Paris, 12-15th May 2025 1



Table 1: Experimental results for the CVA6 over the Embench benchmark suite

Benchmark Cycles per instr. (CPI) Relative error over total cycle count Avg. abs. error per instr.
RTL Perf.Est. Abs. diff. ISSCPI=1 ISSCPI=1.45 Perf.Est. ISSCPI=1 [CC] Perf.Est. [CC]

aha-mont64 1.38 1.37 0.01 27.4% 5.22% 0.334% 0.38 0.0066
crc32 1.46 1.42 0.04 31.5% 0.656% 2.86% 0.71 0.042
cubic 1.43 1.49 0.06 30.2% 1.18% 4.30% 0.53 0.16
edn 1.23 1.13 0.1 18.7% 17.9% 7.80% 0.51 0.27
huffbench 1.47 1.46 0.01 31.7% 1.03% 0.659% 0.88 0.12
matmult-int 1.21 1.13 0.08 17.5% 19.7% 7.13% 0.57 0.10
minver 1.56 1.53 0.03 36.0% 7.18% 2.35% 0.71 0.073
nbody 1.41 1.40 0.01 29.2% 2.72% 0.857% 0.50 0.045
nettle-aes 1.03 1.03 0 3.19% 40.4% 0.567% 0.33 0.013
nettle-sha256 1.04 1.13 0.09 4.06% 39.1% 8.40% 0.31 0.13
nsichneu 2.44 2.56 0.12 58.9% 40.5% 4.92% 1.44 0.40
picojpeg 1.38 1.30 0.08 27.6% 5.03% 5.50% 0.70 0.17
qrduino 1.64 1.53 0.11 39.1% 11.7% 7.14% 0.90 0.13
sglib-combined 1.59 1.65 0.06 37.2% 8.96% 3.90% 0.91 0.26
slre 1.43 1.40 0.03 30.1% 1.33% 2.51% 0.65 0.12
st 1.46 1.43 0.03 31.6% 0.801% 1.89% 0.60 0.080
statemate 1.30 1.28 0.02 22.8% 11.9% 1.48% 0.97 0.044
ud 1.65 1.50 0.15 39.3% 11.9% 8.91% 0.95 0.20
wikisort 1.48 1.45 0.03 32.4% 1.96% 2.21% 0.78 0.11
Average 1.45 1.43 0.056 28.9% 12.1% 3.88% 0.70 0.13

capable of modeling both single- and multi-issue con-
cepts. The estimates are calculated and updated on
an instruction-by-instruction level. This enables fine-
grained profiling of the performance over the course
of the target software and makes it possible to track
performance variations.

The code generator enables a quick and flexible
adaptation of the performance estimator to new pro-
cessor variants. It uses a compact input format, called
CorePerfDSL [2], consisting mainly of a simple struc-
tural description of the target microarchitecture. From
this, the code generator derives the microarchitecture-
specific models for the performance estimator.

Since the performance estimator is trace-based, it
can conveniently be integrated into existing environ-
ments by extending the ISS with a matching instruc-
tion monitor. To facilitate the automated adaptation
of the monitor to new processor variants, the code
generator produces a simulator-independent, JSON-
based monitor description that defines the required
trace format. This allows users to develop an addi-
tional generator to modify the monitor based on this
description. Although this approach requires some
initial effort from the user, it is a one-time task that
further enhances the flexibility of the environment.

Experimental Results

We demonstrate the capabilities of our approach by
applying it to the state-of-the-art CVA6 application
class processor [3]. The CVA6 is a 6-stage RISC-V
processor incorporating advanced microarchitecture
concepts, such as a scoreboard, dual-commit, instruc-
tion buffering, and dynamic branch prediction. We
use the Embench benchmark suite [4] compiled for the
RV64MI instruction set.As a reference, we use an RTL

implementation of the CVA6 embedded in a SystemC
environment.

As shown in Tab. 1, our approach provides accu-
rate performance estimates, even though the proces-
sor’s cycles-per-instruction (CPI) ratio varies over the
benchmarks. Considering the overall cycle count, the
average relative error rate is 3.88%, which is signifi-
cantly lower than that of ISS-based approaches that
assume a fixed CPI. Additionally, the average devia-
tion between the observed and estimated number of
clock cycles (CCs) per instruction is 0.13, highlighting
the effectiveness of our approach in profiling perfor-
mance throughout program execution. Our approach
reaches an average simulation speed of up to 15 million
instructions per second (MIPS), which is significantly
faster than detailed RTL simulations and comparable
to custom-implemented simulators.

References

[1] Conrad Foik et al. “Flexible Generation of Fast and Accu-
rate Software Performance Simulators From Compact Pro-
cessor Descriptions”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 43.11
(2024).

[2] Conrad Foik, Daniel Mueller-Gritschneder, and Ulf
Schlichtmann. “CorePerfDSL: A Flexible Processor De-
scription Language for Software Performance Simulation”.
In: Forum on Specification & Design Languages (FDL).
2022.

[3] OpenHW Group. CVA6 User Manual. https://docs.
openhwgroup . org / projects / cva6 - user - manual/. Ac-
cessed: 2024-03-20. 2023.

[4] Free and Open Source Silicon Foundation. Embench:
A Modern Embedded Benchmark Suite. https : / / www .
embench.org/. Accessed: 2024-03-20. 2021.

2 RISC-V Summit Europe, Paris, 12-15th May 2025

https://docs.openhwgroup.org/projects/cva6-user-manual/
https://docs.openhwgroup.org/projects/cva6-user-manual/
https://www.embench.org/
https://www.embench.org/

	Introduction
	Simulation Framework
	Experimental Results

