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Abstract 

The development risks of novel RISC-V solutions are exacerbated by bugs which are increasingly complicated 

to root-cause in ever-larger systems. We propose an end-to-end solution comprised of both hardware and 

software components for minimally intrusive tracing, logging, and run-stop-step debugging of RISC-V systems.

Introduction 

With the rise in adoption of the RISC-V ecosystem 

comes an increase in complexity of both hardware and 

software, with use cases including high-performance 

computing, generative AI, and multi-chiplet technologies. 

This is both a blessing and a curse: solutions are increasingly 

taking advantage of RISC-V’s customisability, yet also 

increasing the complexity of issues such as Heisenbugs and 

Silent Data Corruption, which are expensive to reproduce 

and solve. This is skyrocketing demands for specialists able 

to rapidly debug issues to ensure timely product deliveries, 

all while a “lack of skilled talent is the biggest issue facing 

the [semiconductor] industry over the next three years” [1]. 

Software-only solutions such as OpenOCD and GDB 

address some of these needs with run-stop-step debug 

control, but this is intrusive and lacks the depth of visibility 

needed to root-cause complex and timing-sensitive bugs. 

More insight is needed from the system to allow engineers 

to identify bugs more efficiently, requiring a more 

comprehensive approach that can not only provide run 

control and processor trace, but also provide multiple debug 

methods and insights into a given RISC-V system. 

This shows a demand for solutions that address the need 

for minimally intrusive debugging whilst being familiar 

enough to use out-of-the-box to address the skills shortage. 

We will discuss the importance of an approach for 

RISC-V that combines the benefits of both hardware and 

software, introducing a complete and customisable end-to-

end solution. This offers benefits such as multi-core run-

stop-step debug control, highly compressed instruction 

tracing of program execution, and numerous hardware-

assisted enhancements. Building upon industry-standard 

freeware and open-source tools familiar to users, such as 

GDB, OpenOCD and VSCode, also minimises the ramp-up 

in learning required to start benefiting from such a solution. 
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Highly efficient trace of custom instructions 

A key benefit of the RISC-V ecosystem is the 

customisability of its ISA. To verify the correct functioning 

of custom instructions in a novel hart, more in-depth 

visibility over program execution is required than can be 

provided with run-stop-step debuggers, but without the 

debuggers affecting program execution order or timing. 

The proposed approach provides an Instruction Trace 

Encoder with out-of-the-box custom instruction support, 

enhancing the use of GDB to non-intrusively and efficiently 

trace any RISC-V program’s execution path over time. 

The trace encoder used in this approach is fully compliant 

with the ratified “Efficient Trace for RISC-V (E-Trace)” 

specification [2]. It provides highly compressed instruction 

trace, benefiting large systems with heavy workloads, where 

bandwidth may be limited. The approach's “enhanced” trace 

encoder boasts an average compression rate of 0.2317 bits 

per instruction based on preliminary tests with Embench™ 

benchmarks, with no extensions enabled. Enabling optional 

extensions such as the Call Counter, Branch Prediction 

Mode, and Jump Target Cache [2] improves the compression 

rate by ~40%. These extensions allow for more efficient 

tracing of program execution, to pinpoint the start of 

unexpected behaviours and solve complex bugs. 

Minimally intrusive logging of program flow 

As debuggers such as GDB can potentially interfere with 

program execution order, developers still fall back on “printf 

debugging”, which is still popular due to its ease of use [3]. 

However, “printf” interferes with program execution timing, 

making it difficult to catch timing-sensitive Heisenbugs. 

This approach uses a hardware Static Instrumentation (SI) 

module for hardware-assisted and minimally intrusive 

logging of program flow, via an intuitive “printf”-like API. 

FPGA implementations of SI demonstrate that its logs only 

take 0.2-0.3% of the processing time that their “printf” 

equivalents take to run, using just a fraction of the number 

of instructions used for “printf”. This minimises timing 

interference, allowing for timing-sensitive bugs to be caught.
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Figure 1: The RISC-V hart (top left), and the hardware (left) and software (right) components of the UltraSight-V solution.

Harnessing hardware/software trade-offs 

There exists a trade-off between hardware and software 

components: hardware is faster at completing a specific task 

than software, with the cost of using expensive silicon area. 

The approach includes hardware IP with low gate counts, 

such as the Direct Memory Access module. In FPGA tests, 

this module offers a 200x speed-up in on-chip ELF file loads 

over software-only GDB, accelerating debug iteration loops. 

Inversely, the approach uses a Virtual Console hardware 

module to leverage the benefits of software multiplexing. 

This enables the use of multiple “virtual” bi-directional off-

chip communication channels, without needing additional 

pins as in a hardware-only solution. Likewise, a Processor 

Analytic Module allows the RISC-V hart to be debugged via 

a single wired connection, be it JTAG or USB. 

Maximising benefits of both hardware and software leads 

to faster debug iterations, with minimal silicon overhead. 

Verifying system integration using UVM 

Over 42% of FPGA design engineers’ time is reported to 

be spent on verification instead of design [4]. This reveals a 

demand for robust and automated verification solutions that 

are delivered along with the hardware IP modules. 

The approach thus includes a UVM environment for 

driving stimuli to a system’s communicators, to easily verify 

the integration of hardware modules within the RISC-V 

system. This prepackaged solution allows engineers to 

refocus their time on designing rather than verification. 

An end-to-end debug and trace solution 

The proposed solution in Figure 1 uses the above hardware 

modules within a given FPGA or SoC, connected to a RISC-

V hart via its existing interfaces. The hardware modules 

communicate using a message-passing fabric. Message 

Engine modules pass data off-chip through a single wired 

interface connected to a host machine. The Host Suite 

software on the host handles communication with OpenOCD 

and GDB, for an end-to-end debug and trace solution taking 

advantage of both hardware and software capabilities. 

Conclusion 

Through FPGA and SoC implementations, we demonstrate 

that an approach using both hardware and software to their 

full extent can provide efficient and minimally intrusive 

RISC-V debug and trace. UltraSight-V implements this 

approach in a complete end-to-end solution for debug, trace, 

and testing of any RISC-V system, maximising developers’ 

usage of extensions and customisations out-of-the-box. 
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