
Bibliography
[1] Wilson Snyder. Verilator. https://verilator.org/.
[2] Advanced Micro Devices, Inc. Vivado Design Suite. https://www.xilinx.com/support/download.html.
[3] Basys 3 Reference Manual. Digilent, Inc.

https://reference.digilentinc.com/reference/programmable-logic/basys-3/reference-manual.
[4] Tony Bybell. GTKWave. https://gtkwave.sourceforge.net/.
[5] Tobias Scheipel, David Beikircher, Florian Riedl. Microcontroller Design, Lab: HaDes-V Instruction Guide.

https://doi.org/10.3217/nytm4-grv34.
[6] Tobias Scheipel, David Beikircher, Florian Riedl. HaDes-V Template Repository.

https://github.com/tscheipel/HaDes-V.

IT
I

Institute of Technical Informatics Inffeldgasse 16/I, 8010 Graz, Austria office@iti.tugraz.at

sc
he

ip
el
.c
om

/o
er

gi
th
ub

.c
om

/t
sc
he

ip
el
/H

aD
es
-V

This poster is licensed under CC BY 4.0 International.
https://creativecommons.org/licenses/by/4.0/

Tobias Scheipel, David Beikircher, Florian Riedl
TU Graz 2025

https://www.scheipel.com/oer

Learning by Puzzling: A Modular Approach to
Processor Design Education

Tobias Scheipel, David Beikircher, Florian Riedl

Institute of Technical Informatics, Graz University of Technology
tobias.scheipel@tugraz.at

Ever thought about developing a processor from scratch and bringing it to life on an
FPGA? With HaDes-V, you’ll delve into hardware design and create your own pipelined
32-bit RISC-V processor, mastering efficient computing principles and practical FPGA

implementation.

WB

IF ID EX MEM WB

*

HaDes-V

student

implementation

golden

reference

RAM LED BTN SW UART Timer 7Seg VGA

module (fetch_stage
 ,input logic clk
 ,input logic rst

 // Memory interface
 . ,wishbone_interface wbmaster

 // Output data
 [] ,output logic 31 0: instruction_reg_out
 [] ,output logic 31 0: program_counter_reg_out

 // Pipeline control
 ,output pipeline_status::forwards_t status_forwards_out
 ,input pipeline_status::backwards_t status_backwards_in
 [] input logic 31 0: jump_address_backwards_in
);

 // : Delete the following line and implement this module.TODO
 ();ref_fetch_stage golden .*

endmodule

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

fetch_stage.svSV

Key Features & Approach
Jigsaw Puzzle Methodology:

Modular Pipeline Stages (IF, ID, EX, MEM, WB) built one at a time.
Golden References (precompiled Verilator [1] libraries) for validation.

Hands-On Tools:
SystemVerilog for hardware description.
Verilator [1] & GTKWave [4] for simulation.
AMD Vivado [2] for synthesis on Basys3 [3] board.

Open Educational Resource (OER):
Instruction Guide [5] and open-source Code Template [6].
Material licensed under CC BY 4.0 and MIT licenses.
→ Encourages global collaboration.

Didactical Structure
Incremental Modules: Students tackle increasing complexity
without being overwhelmed.
Collaborative Learning: Peer reviews, group discussions,
online chat room, and project showcases.
Real-World Implementation: Final designs synthesized on an
FPGA, subsequently reinforcing HW/SW co-design.
Creativity Incentive: The HaDes-V Award for standout
implementations and custom extensions.

Testing & Assessment
GIT-based test system PErsEPHoNE.
Automated grading and detailed student performance insights.
Immediate feedback via pass/fail test outputs.
→ debugging, iterative refinement, and solution ownership.

Readme.md

