

Institute of Technical Informatics Inffeldgasse 16/1, 8010 Graz, Austria I *office@iti.tugraz.at*

日本 ひくく Learning by Puzzling: A Modular Approach to **RISC-V** Processor Design Education

Tobias Scheipel, David Beikircher, Florian Riedl

Institute of Technical Informatics, Graz University of Technology tobias.scheipel@tugraz.at

Ever thought about developing a processor from scratch and bringing it to life on an **FPGA?** With HADES-V, you'll delve into hardware design and create your own pipelined 32-bit RISC-V processor, mastering efficient computing principles and practical FPGA

implementation.

Key Features & Approach

- Jigsaw Puzzle Methodology:
 - Modular Pipeline Stages (IF, ID, EX, MEM, WB) built one at a time.
 - Golden References (precompiled Verilator [1] libraries) for validation.

Hands-On Tools:

SystemVerilog for hardware description.

SV fetch_stage.sv
1 module fetch_stage (
2 input logic clk,
3 input logic rst,
4
5 // Memory interface
6 wishbone_interface.master wb,
7
8 // Output data
9 output logic [31:0] instruction_reg_out,
10 output logic [31:0] program_counter_reg_out,
11 12 // Dipolipo control
<pre>12 // Pipeline control 13 output pipeline status::forwards t status forwards out,</pre>
<pre>13 output pipeline_status::forwards_t status_forwards_out, 14 input pipeline_status::backwards_t status_backwards_in,</pre>
15 input logic [31:0] jump_address_backwards_in
16);
17
18 // TODO: Delete the following line and implement this module.
19 ref fetch stage golden(.*);
20
21 endmodule

Testing & Assessment

- GIT-based test system P{R5{PHON}.
- Automated grading and detailed student performance insights.
- Immediate feedback via pass/fail test outputs.
 - \rightarrow debugging, iterative refinement, and solution ownership.

- Verilator [1] & GTKWave [4] for simulation.
- AMD Vivado [2] for synthesis on Basys3 [3] board.
- Open Educational Resource (OER):
 - **Instruction Guide** [5] and open-source **Code Template** [6].
 - Material licensed under CC BY 4.0 and MIT licenses.
 - \rightarrow Encourages global collaboration.

Didactical Structure

- Incremental Modules: Students tackle increasing complexity without being overwhelmed.
- **Collaborative Learning:** Peer reviews, group discussions, online chat room, and project showcases.
- **Real-World Implementation:** Final designs synthesized on an FPGA, subsequently reinforcing HW/SW co-design.
- **Creativity Incentive:** The HADES-V Award for standout implementations and custom extensions.

new test run "fetch stage" at 202 Persephone authored 2 minutes ago	25-03-10_1100					
M* Readme.md 21.22 KiB						
Testcase Results						
Repository: student_repo_name Test Run: 12.05.2025 10:30 Test Deadline: 17.05.2025 00:00						
Tested Commit Information						
Date: 11.05.2025 17:42 Hash: abc123 Message: this is the latest commit mes Committer Email: <u>some@student.tugra</u>						
Module Under Test:	Fetch Sta	aqe				
▼ Details for the Fetch Stage						
• Details for the Fetch Stage Points: 8.00 / 8 Module Under Test:	Decode	Stage				
 Details for the Fetch Stage Points: 8.00 / 8 Module Under Test: Details for the Decode Stage 	Decode	Stage				
 Details for the Fetch Stage Points: 8.00 / 8 Module Under Test: Details for the Decode Stage Points: 2.51 / 4 	Decode	Stage				
 Details for the Fetch Stage Points: 8.00 / 8 Module Under Test: Details for the Decode Stage 			in = VALID			
 Details for the Fetch Stage Points: 8.00 / 8 Module Under Test: Details for the Decode Stage Points: 2.51 / 4 OPC_SYSTEM CSR-operations 			in = VALID			
 Details for the Fetch Stage Points: 8.00 / 8 Module Under Test: Details for the Decode Stage Points: 2.51 / 4 OPC_SYSTEM CSR-operations Test input: CSRRWI with status_backy 	wards_in = READY	and status_forwards_	in = VALID			
 Details for the Fetch Stage Points: 8.00 / 8 Module Under Test: Details for the Decode Stage Points: 2.51 / 4 OPC_SYSTEM CSR-operations Test input: CSRRWI with status_backy Signal 	wards_in = READY Is Value 0x00000000	and status_forwards_ Expected Value 0x0000001				
 Details for the Fetch Stage Points: 8.00 / 8 Module Under Test: Details for the Decode Stage Points: 2.51 / 4 OPC_SYSTEM CSR-operations Test input: CSRRWI with status_backy Signal	wards_in = READY Is Value 0x00000000	and status_forwards_ Expected Value 0x0000001				

Bibliography

- [1] Wilson Snyder. Verilator. https://verilator.org/.
- [2] Advanced Micro Devices, Inc. Vivado Design Suite. https://www.xilinx.com/support/download.html.
- Basys 3 Reference Manual. Digilent, Inc.
- https://reference.digilentinc.com/reference/programmable-logic/basys-3/reference-manual.
- [4] Tony Bybell. GTKWave. https://gtkwave.sourceforge.net/.

This poster is licensed under CC BY 4.0 International.

[5] Tobias Scheipel, David Beikircher, Florian Riedl. Microcontroller Design, Lab: HaDes-V Instruction Guide.

https://doi.org/10.3217/nytm4-grv34.

[6] Tobias Scheipel, David Beikircher, Florian Riedl. HaDes-V Template Repository.

https://github.com/tscheipel/HaDes-V.

