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Ever thought about developing a processor from scratch and bringing it to life on an
FPGA? With HaDes-V, you’ll delve into hardware design and create your own pipelined
32-bit RISC-V processor, mastering efficient computing principles and practical FPGA

implementation.
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module  (fetch_stage
    ,input logic clk
    ,input logic rst

  // Memory interface
  .  ,wishbone_interface wbmaster

  //  Output data
    [ ] ,output logic 31 0: instruction_reg_out
    [ ] ,output logic 31 0: program_counter_reg_out

  // Pipeline control
     ,output pipeline_status::forwards_t status_forwards_out
     ,input pipeline_status::backwards_t status_backwards_in
     [ ] input logic 31 0: jump_address_backwards_in
);

  // : Delete the following line and implement this module.TODO
   ( );ref_fetch_stage golden .*

endmodule
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fetch_stage.svSV

Key Features & Approach
Jigsaw Puzzle Methodology:

Modular Pipeline Stages (IF, ID, EX, MEM, WB) built one at a time.
Golden References (precompiled Verilator [1] libraries) for validation.

Hands-On Tools:
SystemVerilog for hardware description.
Verilator [1] & GTKWave [4] for simulation.
AMD Vivado [2] for synthesis on Basys3 [3] board.

Open Educational Resource (OER):
Instruction Guide [5] and open-source Code Template [6].
Material licensed under CC BY 4.0 and MIT licenses.
→ Encourages global collaboration.

Didactical Structure
Incremental Modules: Students tackle increasing complexity
without being overwhelmed.
Collaborative Learning: Peer reviews, group discussions,
online chat room, and project showcases.
Real-World Implementation: Final designs synthesized on an
FPGA, subsequently reinforcing HW/SW co-design.
Creativity Incentive: The HaDes-V Award for standout
implementations and custom extensions.

Testing & Assessment
GIT-based test system PErsEPHoNE.
Automated grading and detailed student performance insights.
Immediate feedback via pass/fail test outputs.
→ debugging, iterative refinement, and solution ownership.
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