

Supercomputing Centro Nacional de Supercomputación

WebRISC-V: a 64-bit RISC-V Pipeline Simulator for Computer Architecture Classes

Roberto Giorgi^{1,2} and Gianfranco Mariotti¹

¹ Department of Information Engineering and Mathematics, University of Siena - Italy

² Barcelona Supercomputing Center (BSC) - Spain

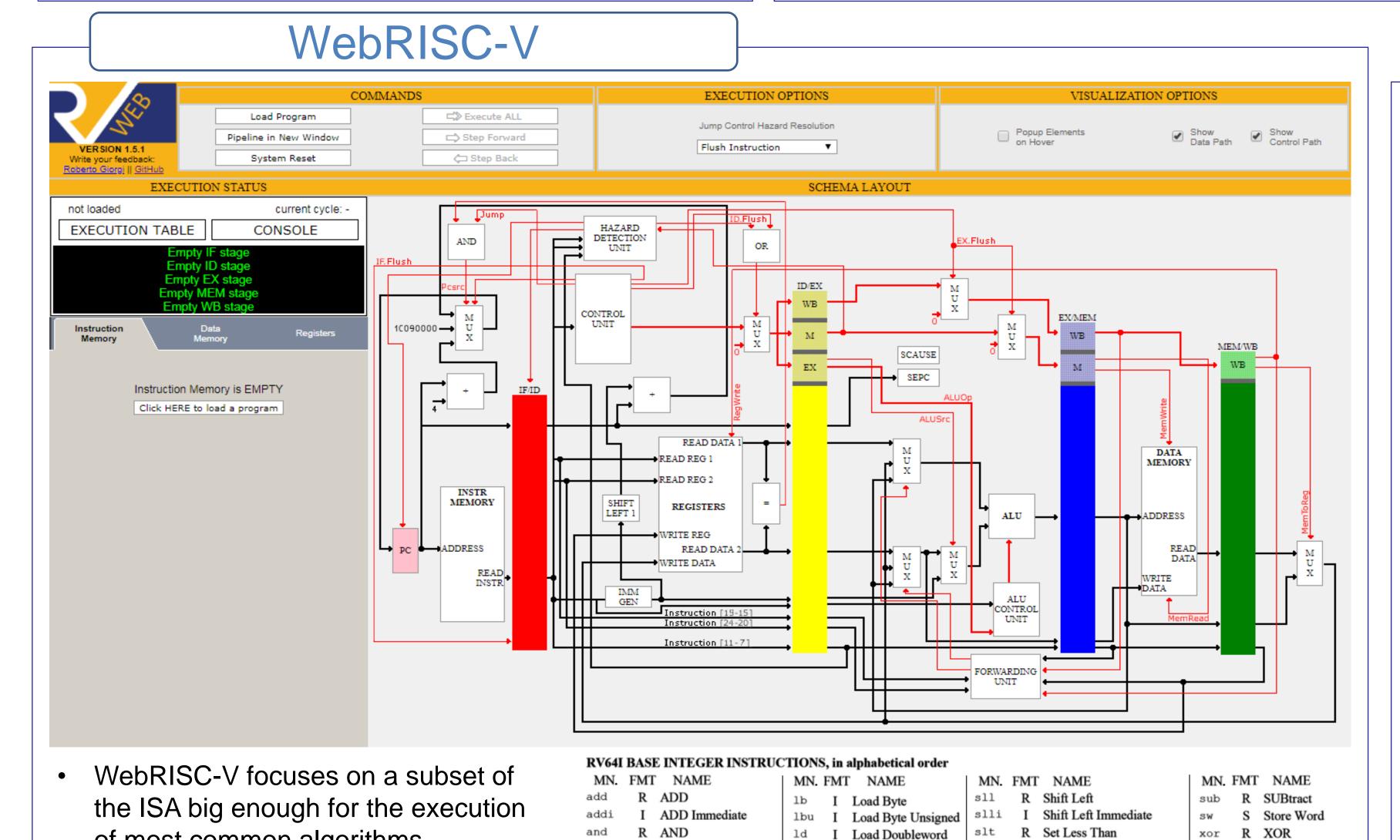
mariotti@diism.unisi.it giorgi@unisi.it

Motivation

Contributing to the RISC-V acceptance in the Computer Architecture education communities by smoothing the migration from MIPS to RISC-V in classes, through the creation of a simple and easily accessible tool to test RISC-V programs on a pipelined processor

Achievements

- WebRISC-V is released as open source under the permissive BSD license [1]; it is possible to test it online at http://www.dii.unisi.it/~giorgi/WebRISC-V
- WebRISC-V was first presented in Phoenix, AZ, USA


The need for RISC-V Educational Tools

- RISC-V is what Computer Architecture teachers are looking for: not tighten to a few vendors!
- It is open and the standard is maintained by the non-profit RISC-V Foundation [3]
- RISC-V educational tools are needed understand the sw/hw intricacies and basic concepts [4]

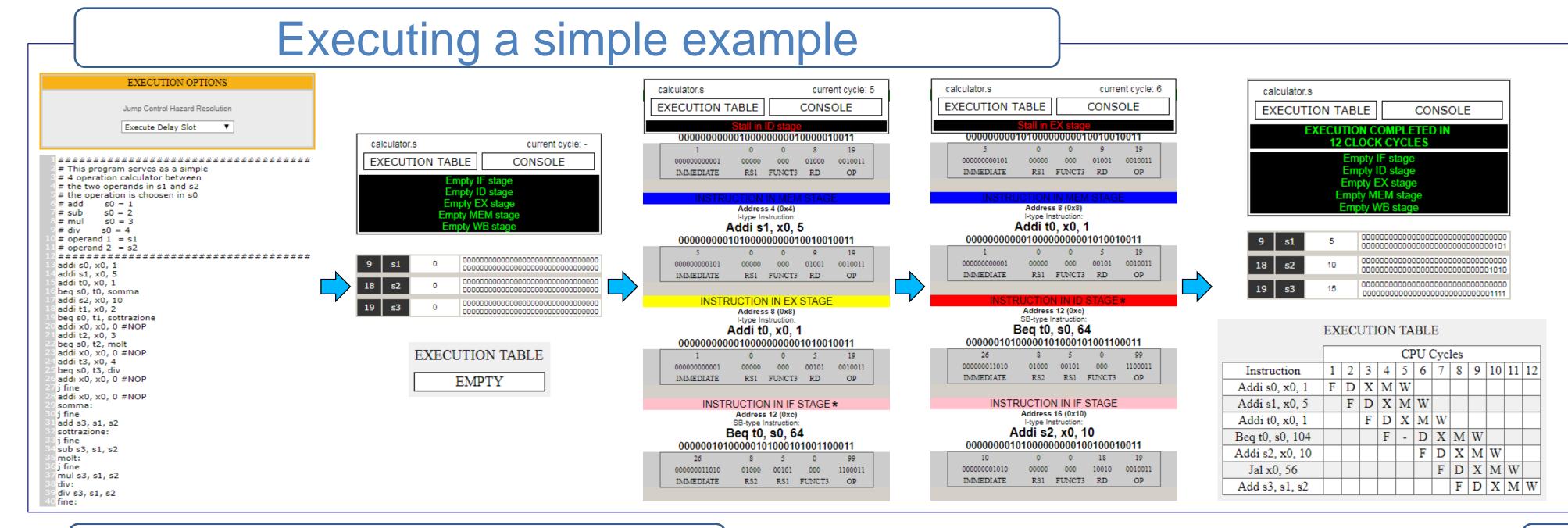
at the WCAE @ ISCA 2019, it is Open Access on the ACM digital library [2] and it continues to evolve!

Comparison with other **Datapath simulators**

WebRISC-V was compared with several Datapath simulators of several architectures: WinDLX [6] of DLX, MARS MIPS X-Ray [7], DrMIPS [8], Mipster32 [9], UCOMIPSIM [10], Visimips [11], WASP [12], WebMIPS [13] of MIPS and Ripes [14] of RISC-V.

The following table was produced from this process.

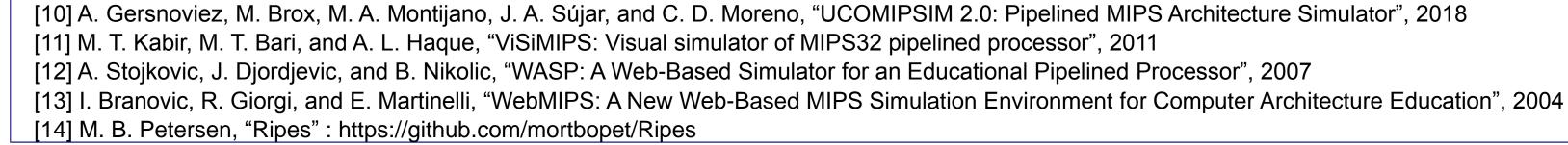
		Graphical	Visualization		path entation	Web Accessibility		
		Presentation	Architectural Elements	syngle cycle	pipelined	$_{\rm side^1}^{\rm client}$	server $side^2$	
DLX	WINDLX	Stage Blocks			~			
	MARS X-RAY	Datapath		~				
	DrMIPS	Datapath with Control Unit	\checkmark	~	~			
S	Mipster32	Stage Blocks			~			
MIPS	UCOMIPSIM	Datapath with Control Unit	√		~			
	Visimips	Datapath with Control Unit			~			
	WASP	Datapath with Control Unit	✓		~	√		
	WebMIPS	Datapath with Control Unit	✓		~		√	
.								

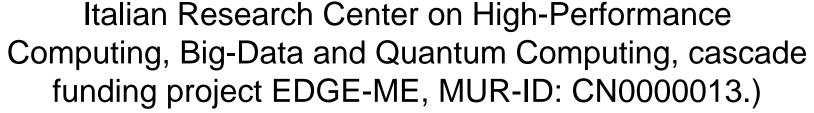

of most common algorithms RIPES WebRISC-V is a 64-bit simulator: it

implements the RV64I base part and the RV64M extension [5]

andi	Ι	AND Immediate	lh	Ι	Load Halfword	slti	Ι	Set Less Than Immediate	xori	Ι	XOR Immediate
beq	SB	Branch EQual	lw	Ι	Load Word	sltiu	I	Set < Immediate Unsigned			
bne	SB	Branch Not Equal	or	R	OR	sltu	R	Set Less Than Unsigned	RV64M Multiply Extension		
ebreak	Ι	Environment BREAK	ori	Ι	OR Immediate	sra	R	Shift Right Arithmetic	mul	R	MULtiply
ecall	Ι	Environment CALL	sb	S	Store Byte	srai	Ι	Shift Right Arith Imm	mulh	R	MULtiply High
jal	UJ	Jump & Link	sd	S	Store Doubleword	srl	R	Shift Right	div	R	DIVide
jalr	Ι	Jump & Link Register	sh	S	Store Halfword	srli	I	Shift Right Immediate	rem	R	REMainder

¹Additional plug-ins required. ²Accessible directly from the Web without the use of plug-ins.


Here we can see some snippets of an execution, with the Delay Slot activated, of the example code "Simple Calculator". We can see the occurrence and passing through the pipeline of stalls and the instructions that generated them, what happens in memory, what happens in the registers and the clock cycles necessary for the code provided.


References

- [1] G. Mariotti and R. Giorgi, "WebRISC-V" : https://github.com/Mariotti94/WebRISC-V
- [2] G. Mariotti and R. Giorgi, "WebRISC-V: A Web-Based Education-Oriented RISC-V Pipeline Simulation Environment", 2019
- [3] K. Asanovic, "RISC-V State of the Union", RISC-V Workshop, Zurich, 11 June 2019.
- [4] C. Redmond, "Guiding the Future of RISC-V", RISC-V Workshop, Zurich, 11 June 2019.
- [5] D. A. Patterson and J. L. Hennessy, "Computer Organization and Design RISC-V Edition: The Hardware Software Interface, 1st ed.", 2017
- [6] H. Grunbacher and H. Khosravipour, "WinDLX and MIPSim pipeline simulators for teaching computer architecture", 1996
- [7] G. C. R. Sales, M. R. D. Araújo, F. L. C. Pádua, and F. L. Correa Júnior, "MIPS X-Ray: A plug-in to MARS simulator for datapath visualization", 2010
- [8] B. Nova, J. C. Ferreira, and A. Araújo, "Tool to support computer architecture teaching and learning", 2013
- [9] J. C. de Oliveira Quintas, "Mipster32: A 32 bit MIPS Simulator", 2017

Acknowledgements

This work is partly funded by the Barcelona Zettascale Laboratory, promoted by the Spanish Ministry for Digital Transformation and the Civil Service, within the framework of the Recovery, Transformation and Resilience Plan - Funded by the European Union -NextGenerationEU and via the PNRR M4C2-Inv1.4

