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Abstract

This paper presents an approach to accelerate Java applications on RISC-V processors equipped with vector
extensions. Our approach utilizes a two-stage compilation chain composed of two open-source compilation
frameworks. The first compilation is performed by TornadoVM, a Java Framework that includes a Just-In-Time
(JIT) compiler and a runtime system that translate Java Bytecode into OpenCL and SPIR-V. The second
compilation is operated by the oneAPI Construction Kit (OCK), a programming framework that translates
OpenCL and SPIR-V code into an efficient binary augmented with vector instructions for RISC-V CPUs. We
also present a preliminary performance evaluation using matrix multiplication. Results demonstrate a substantial
performance improvement in the code generated when compared against functionally equivalent single-threaded
and multi-threaded Java implementations, achieving speedups up to 33x and 4.6x respectively.

Introduction

Java is widely used due to its extensive ecosystem for
a variety of application domains. However, in some
cases the performance of Java applications can be
constrained due to the inability of the Java Virtual
Machine (JVM) to efficiently execute computationally
intensive workloads that offer high data parallelism.
The JVM prioritizes stability and backward compat-
ibility, leading, in some cases, to a slower adoption
of new features, especially those related to hardware
acceleration. The strict adherence to a predictable
development process makes it challenging to integrate
cutting-edge advancements rapidly, potentially leaving
innovative use cases underserved.

This paper introduces a two-stage compilation chain
for Java targeting RISC-V accelerators to enable effi-
cient execution of Java applications on RISC-V ar-
chitectures by exploiting vector instructions. Our
approach leverages TornadoVM [1], an existing high-
performance computing framework for Java, to target
RISC-V vector units through a new integration with
OCK [2], a recently developed framework for implemen-
tation of open standards1. We extended TornadoVM
to be able to target OCK as a driver for OpenCL and
SPIR-V, allowing to execute Java code on RVV 1.0
vector instructions. We demonstrate our approach
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Figure 1: TornadoVM/OCK JIT compiler workflow.

through a performance evaluation centered on matrix
multiplication, a fundamental operation in AI, ML and
scientific computing. Our experimental results using
a RISC-V SBC show that our system achieves signifi-
cant speedups compared to optimized, multi-core Java
implementations running on the same platform.

2-stage Compilation for RISC-V

Figure 1 illustrates the execution and compilation
workflow of our enhanced system, combining Tor-
nadoVM with OCK. The workflow begins with a Java
application that utilizes the TornadoVM framework,
depicted on the left-hand side of the figure. During
run-time, the TornadoVM JIT compiler optimizes the
Java methods tagged for acceleration using Java anno-
tations (e.g., @Parallel), transforming the bytecodes
into either OpenCL C or SPIR-V code. Subsequently,
the TornadoVM runtime dispatches the generated code
to the appropriate driver implementation. In this case,
it is the OCK framework, which is responsible for
handling both OpenCL and SPIR-V inputs. Crucially,
OCK performs automatic vectorization on the received
code, ultimately producing highly optimized RISC-V
vector code corresponding to the parallel regions origi-
nally expressed in Java.
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Figure 2: Performance of MxM using TornadoVM OCK vs Java on RISC-V Spacemit K1. The lower, the better.

Performance Evaluation

We benchmarked our approach using the canonical
Matrix-Matrix Multiplication (MxM) algorithm. MxM
is fundamental to a wide range of computationally
intensive domains, including Artificial Intelligence (AI)
and Deep Learning, making it a relevant benchmark
for evaluating performance.
Hardware Our evaluation utilizes a RISC-V based
Single Board Computer (SBC) 2. This platform fea-
tures an 8-core Spacemit K1 RISC-V processor clocked
at 1.6 GHz, coupled with 4 GB of RAM. The system
runs Bianbu OS 1.0.5, a RISC-V optimized distribu-
tion based on Ubuntu.
Software We employed TornadoVM version 1.0.10-
dev (commit ec667bd65) in combination with OCK
(commit 65036b8) as our software stack, using LLVM
19.1.5 and GCC 13.2. The underlying Java environ-
ment was OpenJDK 21.0.5.
Methodology We implemented MxM in Java using
three distinct strategies: 1) a single-threaded CPU
implementation, 2) a multi-threaded implementation
utilizing all available CPU cores, and 3) a TornadoVM-
accelerated version, leveraging OCK to exploit the
RISC-V vector instructions. Each implementation
was executed 100 times. The performance results are
presented as box-plots, providing a comprehensive
visualization of the execution time distributions for
each configuration.
Analysis The x-axis in Figure 2 shows the perfor-
mance of MxM on RISC-V with RVV 1.0, with the
x-axis representing matrix size and the y-axis indicat-
ing execution time in nanoseconds (lower is better).
The overall execution time includes the compilation
time for all implementations.

For matrices up to 64x64, the sequential Java out-
performs both Java parallel streams and TornadoVM.
However, for larger matrices, Java streams achieve
speedups of 2.3x to 7.2x over sequential Java. The
TornadoVM’s OpenCL C backend delivers speedups
ranging from 4.1x to 33x compared to the sequential
Java, and 2x to 4.6x compared to multi-core Java
streams. The SPIR-V backend shows slightly lower

2 https://docs.banana-pi.org/en/BPI-F3/BananaPi_BPI-F3

performance than OpenCL C, with speedups of 3.4x
to 32x over sequential Java and 1.4x to 4.4x over
multi-core Java. Notably, for large matrices, both Tor-
nadoVM backends (OpenCL and SPIR-V) outperform
all Java implementations even in this first run, which
includes the JIT compilation.
Lessons learnt Although cross-compilation from an
x86 to RISC-V is possible, we wanted to put this plat-
form to the test and check its limits. The on-device
compilation for the LLVM and OCK dependencies
were the most critical ones. Due to the Banana Pi
F3’s 4GB RAM, single-threaded compilation was nec-
essary, resulting in lengthy build times of LLVM/OCK
(four days for LLVM, two for OCK). OCK compila-
tion was further extended by iterative optimization of
compiler flags for RISC-V. Besides, active cooling was
also implemented to prevent overheating during com-
pilation. Despite these challenges, successful on-device
compilation demonstrates the feasibility of building
the entire software stack directly on such devices.

Conclusions & Future Work

This work presented a compilation chain that can accel-
erate the performance of Java applications on RISC-V
architectures that have vectorization support. Future
work will focus on expanding the range of supported
Java applications, and analyzing the performance gap
between OpenCL and SPIR-V implementations.
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