
Leveraging RISC-V Vectorization:
Accelerating Java Programs with TornadoVM and OCK

Juan Fumero1, Athanasios Stratikopoulos1, Colin Davidson2, Harald van Dijk2,
Uwe Dolinsky2, Michail Papadimitriou1, Maria Xekalaki1, and Christos Kotselidis1

1Department of Computer Science, The University of Manchester
2Codeplay Software Ltd, UK

COMPILER TOOLCHAIN: FROM JAVA SCALAR TO VECTORIZED CODE

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European
Union or the HaDEA. Neither the European Union nor the granting authority can be held responsible for them. Project number: 101092850. In addition, this
work is funded by UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding guarantee for grant numbers 10048318 and
10048915.

MORE INFORMATION

Scan & read our paper

PERFORMANCE for MATRIX MULTIPLICATION of SIZE NxN
 • TornadoVM + OCK is

• up to 4.6x vs Java-Streams
• up to 33x vs Java single threaded

Evaluated on a BananaPI F3: Spacemit K1 Octacore Processor with 4GB of RAM

TornadoVM: A Java parallel
programming framework that offloads
data parallel workloads onto
heterogenous hardware to increase
performance of Java programs. It
contains a JIT compiler and a runtime
system to run as transparent as possible
on GPUs, FPGAs and CPUs.

oneAPI Construction Kit (OCK): A
programming framework for the
implementation of Open Standards for
new hardware accelerators. Runs on
RISC-V and it provides an auto-vectorizer.

Java and JVM prioritizes stability and
backward compatibility. However, this
can slow adoption of new hardware
features.
So, how can we accelerate modern
Java workloads on RISC-V
Accelerators?

TOOLCHAIN

MOTIVATION

Follow our work in AERO

REFERENCES

[1] Juan Fumero et al. “Dynamic application
reconfiguration on heterogeneous hardware”.
VEE 2019. doi: 10.1145/ 3313808.3313819.

[2] Alastair Murray and Ewan Crawford. “Compute
Aorta: A toolkit for implementing heterogeneous
programming models”.
IWOCL ’20. doi: 10.1145/3388333.3388652.

32x32 64x64 128x128 256x256 512x512 1024x1024

1e+07

1e+09

1e+11

R
un

tim
e

in
 n

an
os

ec
on

ds
 (n

s)

Version Java−Single Java−Streams TornadoVM−OCL TornadoVM−SPIRV

• Java-Streams is 7.2x faster than
Java single threaded

