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PERFORMANCE for MATRIX MULTIPLICATION of SIZE NxN
 • TornadoVM + OCK is

• up to 4.6x vs Java-Streams
• up to 33x vs Java single threaded 

Evaluated on a BananaPI F3: Spacemit K1 Octacore Processor with 4GB of RAM 

TornadoVM: A Java parallel 
programming framework that offloads 
data parallel workloads onto 
heterogenous hardware to increase 
performance of Java programs. It 
contains a JIT compiler and a runtime 
system to run as transparent as possible 
on GPUs, FPGAs and CPUs.

oneAPI Construction Kit (OCK): A 
programming framework for the  
implementation of Open Standards for 
new hardware accelerators. Runs on 
RISC-V and it provides an auto-vectorizer. 

Java and JVM prioritizes stability and 
backward compatibility. However, this 
can slow adoption of new hardware 
features. 
So, how can we accelerate modern 
Java workloads on RISC-V 
Accelerators? 
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• Java-Streams is 7.2x faster than 
Java single threaded


