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Abstract 

Coming up with a new RISCV Vector processor demands efficient workload execution. Conventional 

approaches include: (1) compiling high-level C/C++ code using auto-vectorizing compilers (e.g., LLVM or 

GCC), (2) hand-optimizing performance-critical kernels using intrinsics or assembly, or (3) a hybrid of both—

yielding the best binaries but requiring significant manual effort. Although auto-vectorization is fast, it often 

produces suboptimal code compared to what hand optimization can achieve. We propose an alternative: 

leverage existing hand-optimized kernels (originally developed for x86 AVX, ARM Neon, and RISCV Vector - 

with differing micro - archs) by generating compiler IR (e.g., LLVM IR) from these vector codes and then re-

vectorizing it for the target processor using a tool like LLVM. This approach produces more optimal machine 

code than compiling high-level language code and yields structures that are easier to further hand-optimize. 

This also makes quick enablement of existing code bases in other ISA intrinsics on RISCV Vector Processors 

possible. In this paper, we detail our auto-re-vectorization method, its implementation, and present cycle-based 

performance comparisons against vector code generated from high-level language compilations and other 

existing approaches. 

Introduction 

When a new processor is released, optimizing workloads 

to minimize latency, maximize throughput, reduce memory 

footprint, and lower power consumption is critical. A small 

number of kernels—frequently executed code blocks—often 

dominate execution time, so optimizing these (usually via 

hand-tuned intrinsics or assembly) is essential to fully 

exploit the processor’s ISA. Many domains use libraries 

(e.g., BLIS [1], OpenBLAS [2], Eigen [3]) that include such 

kernels, but manually optimizing them for a new processor 

can take many human-months, and compiling high-level 

C/C++ often yields suboptimal performance, as evidenced 

by Alireza et al. (Sep 2023) [4]. 

We propose leveraging existing hand-optimized kernels 

from other ISAs by auto-re-vectorizing them to the new 

processor’s ISA using compiler infrastructure. These kernels 

already have efficient, vector-friendly patterns compared to 

generic code. Prior work by Charith et al. (Feb 2019) [5] 

demonstrated that LLVM IR passes can re-vectorize code for 

newer vector ISA versions (e.g., AVX→AVX2/AVX512). 

We have implemented a tool that transforms vector intrinsic 

code from x86 AVX and ARM Neon into RISC-V Vector 

code via LLVM IR transformations. We also compare our 

approach to header-based translations [6, 7] and a 

proprietary tool from a RISC-V vendor [8]. Our contribution 

is the disclosure of our LLVM pass–based method, with the 

tool and source code released to the RISC-V community. 

Methodologies 

Auto-re-vectorization Method / Algorithm 

The methodology was designed to systematically 

transform other vector ISA (x86 AVX, ARM Vector/Neon, 

etc) intrinsic code into RISC-V Vector assembly and analyse 

its performance metrics. The procedure consists of first 

converting the input intrinsic code (other vector ISA) to 

LLVM Vector IR, then modifying the input ISA attributes to 

RISC-V Vector attributes, applying LLVM vector 

optimization passes (for a specific RISC-V Vector 

Processor) and finally lowering the optimized LLVM Vector 

IR to the target RISC-V Vector assembly code. The details 

are described in the following steps using the example of 

converting x86 AVX code to RISC-V Vector code: 

Conversion of AVX Intrinsic Code to LLVM 

Vector IR 

The C/C++ AVX intrinsic code was complied to the 

LLVM intermediate representation (IR) using the clang 

compiler. Example command: 

clang -target x86_64-unknown-linux-gnu  -S -emit-llvm -

mfma <source_file>.c -o <llvm_ir_file>.ll 
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Modification of x86 Attributes to RISC-V 

Vector Attributes 

The generated LLVM IR file is modified to replace x86-

specific attributes with RISC-V Vector-specific attributes. 

Specifically, attributes such as “target triple”  “target-cpu” 

“target-features” “tune-cpu” were changed  to RISC-V 

Specific attributes, that align with Risc-V Vector 

architecture. 

Application of LLVM Optimizer Passes 

The next step is to apply LLVM Optimizer (opt) passes on 

the modified IR File. Before applying the optimizer passes 

the “optnone” Attribute was removed from the modified IR 

File as the optnone attribute suppresses essentially all 

optimizations on a function or method. 

The optimizer passes applied are: 

• default<O2> 

• loop-vectorize 

• slp-vectorizer 

• load-store-vectorizer 

Example command: 

opt -S -debug-pass-manager -passes="default<O2>,loop-

vectorize,slp-vectorizer,load-store-vectorizer" 

<modified_llvm_ir_file>.ll -o <optimized_llvm_ir>.ll -

mtriple=riscv64 -mcpu=<target CPU for riscv64 

architecture> 

Generation of RISC-V Vector Assembly 

The optimized LLVM IR was lowered into RISC-V Vector 

Assembly using the LLVM backend. Example command: 

llc -march=riscv64 -mattr=<target-features> -

mcpu=<target CPU for riscv64 architecture> -o 

<output_rvv_asm_file>.s <optimized_llvm_ir>.ll 

Discussion 

LLVM provides the llvm-mca tool [9] to analyze machine 

code using LLVM’s processor scheduling models. It 

retrieves instruction timing, latencies, and throughput for a 

given CPU. We used llvm-mca to analyze generated RISC-

V Vector assembly code, measuring cycle counts and 

performance estimates for specific target processors. 

Example command: 

llvm-mca -mtriple=riscv64 -mcpu=<target-cpu> -

iterations=1 < rvv_asm.s > <output.txt> 

Results 

We compared the performance of a matrix 

multiplication kernel, written in reference C code as well as 

in C intrinsics of x86 AVX. The reference C code was auto-

vectorized to RVV using LLVM (Generic Flow), and the 

intrinsic code was converted to RVV using our Auto-re-

vectorization tool (for targets SiFive X280 and P670). We 

compared the performance of these two RVV assemblies 

using the llvm-mca tool. The results are given below: 

 

Table 1: Matmul performance comparison.  

Target 

Processor 

Generic 

Flow 

(cycles) 

Auto Re-

Vectorization 

Flow 

(cycles) 

Performance 

Gain 

SiFive 

X280 

548 315 1.74 x 

SiFive 

P670 

91 52 1.75 x 

 

We see that the performance of the code generated by 

our Auto-re-vectorization tool is better than the auto-

vectorized code generated from reference C code. We intend 

to do similar comparison of more kernel types, which is 

expected to give even better results, since matrix 

multiplication is well optimized in compilers compared to 

other compute kernels. 

Comparison with Alternative Approaches 

There are couple of open-source tools available for 

converting x86 SSE code and ARM Neon code to RVV code 

[6, 7]. They use an alternative approach for this conversion. 

They replace the intrinsic headers with the corresponding 

implementation using RVV or C code wherever there is no 

one-to-one RVV replacement for the SSE/Neon instructions. 

The disadvantage of this approach is that a separate 

implementation of the header is required for each different 

version of the ISA, while our approach leverages the LLVM 

infrastructure itself.  Also, the header replacement approach  

generates one-to-one replacement of the input code, which 

might not be the optimal RVV code for a given Vector 

microarch. Our approach leverages LLVM infrastructure to 

do optimizations suitable for the given target Vector 

microarchitecture. 
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