

RISC-V Summit Europe, Paris, 12-15th May 2025 1

Auto-re-vectorization into RISCV Vector Code, from

Vector/SIMD Intrinsics Code Written for Other Architectures

like x86 AVX or ARM Vector/Neon, Using LLVM

Infrastructure
Nisanth Mathilakath Padinharepatt1 and Sanket Lonkar1

1MIPS Technologies

Abstract

Coming up with a new RISCV Vector processor demands efficient workload execution. Conventional

approaches include: (1) compiling high-level C/C++ code using auto-vectorizing compilers (e.g., LLVM or

GCC), (2) hand-optimizing performance-critical kernels using intrinsics or assembly, or (3) a hybrid of both—

yielding the best binaries but requiring significant manual effort. Although auto-vectorization is fast, it often

produces suboptimal code compared to what hand optimization can achieve. We propose an alternative:

leverage existing hand-optimized kernels (originally developed for x86 AVX, ARM Neon, and RISCV Vector -

with differing micro - archs) by generating compiler IR (e.g., LLVM IR) from these vector codes and then re-

vectorizing it for the target processor using a tool like LLVM. This approach produces more optimal machine

code than compiling high-level language code and yields structures that are easier to further hand-optimize.

This also makes quick enablement of existing code bases in other ISA intrinsics on RISCV Vector Processors

possible. In this paper, we detail our auto-re-vectorization method, its implementation, and present cycle-based

performance comparisons against vector code generated from high-level language compilations and other

existing approaches.

Introduction

When a new processor is released, optimizing workloads

to minimize latency, maximize throughput, reduce memory

footprint, and lower power consumption is critical. A small

number of kernels—frequently executed code blocks—often

dominate execution time, so optimizing these (usually via

hand-tuned intrinsics or assembly) is essential to fully

exploit the processor’s ISA. Many domains use libraries

(e.g., BLIS [1], OpenBLAS [2], Eigen [3]) that include such

kernels, but manually optimizing them for a new processor

can take many human-months, and compiling high-level

C/C++ often yields suboptimal performance, as evidenced

by Alireza et al. (Sep 2023) [4].

We propose leveraging existing hand-optimized kernels

from other ISAs by auto-re-vectorizing them to the new

processor’s ISA using compiler infrastructure. These kernels

already have efficient, vector-friendly patterns compared to

generic code. Prior work by Charith et al. (Feb 2019) [5]

demonstrated that LLVM IR passes can re-vectorize code for

newer vector ISA versions (e.g., AVX→AVX2/AVX512).

We have implemented a tool that transforms vector intrinsic

code from x86 AVX and ARM Neon into RISC-V Vector

code via LLVM IR transformations. We also compare our

approach to header-based translations [6, 7] and a

proprietary tool from a RISC-V vendor [8]. Our contribution

is the disclosure of our LLVM pass–based method, with the

tool and source code released to the RISC-V community.

Methodologies

Auto-re-vectorization Method / Algorithm

The methodology was designed to systematically

transform other vector ISA (x86 AVX, ARM Vector/Neon,

etc) intrinsic code into RISC-V Vector assembly and analyse

its performance metrics. The procedure consists of first

converting the input intrinsic code (other vector ISA) to

LLVM Vector IR, then modifying the input ISA attributes to

RISC-V Vector attributes, applying LLVM vector

optimization passes (for a specific RISC-V Vector

Processor) and finally lowering the optimized LLVM Vector

IR to the target RISC-V Vector assembly code. The details

are described in the following steps using the example of

converting x86 AVX code to RISC-V Vector code:

Conversion of AVX Intrinsic Code to LLVM

Vector IR

The C/C++ AVX intrinsic code was complied to the

LLVM intermediate representation (IR) using the clang

compiler. Example command:

clang -target x86_64-unknown-linux-gnu -S -emit-llvm -

mfma <source_file>.c -o <llvm_ir_file>.ll

2 RISC-V Summit Europe, Paris, 12-15th May 2025

Modification of x86 Attributes to RISC-V

Vector Attributes

The generated LLVM IR file is modified to replace x86-

specific attributes with RISC-V Vector-specific attributes.

Specifically, attributes such as “target triple” “target-cpu”

“target-features” “tune-cpu” were changed to RISC-V

Specific attributes, that align with Risc-V Vector

architecture.

Application of LLVM Optimizer Passes

The next step is to apply LLVM Optimizer (opt) passes on

the modified IR File. Before applying the optimizer passes

the “optnone” Attribute was removed from the modified IR

File as the optnone attribute suppresses essentially all

optimizations on a function or method.

The optimizer passes applied are:

• default<O2>

• loop-vectorize

• slp-vectorizer

• load-store-vectorizer

Example command:

opt -S -debug-pass-manager -passes="default<O2>,loop-

vectorize,slp-vectorizer,load-store-vectorizer"

<modified_llvm_ir_file>.ll -o <optimized_llvm_ir>.ll -

mtriple=riscv64 -mcpu=<target CPU for riscv64

architecture>

Generation of RISC-V Vector Assembly

The optimized LLVM IR was lowered into RISC-V Vector

Assembly using the LLVM backend. Example command:

llc -march=riscv64 -mattr=<target-features> -

mcpu=<target CPU for riscv64 architecture> -o

<output_rvv_asm_file>.s <optimized_llvm_ir>.ll

Discussion

LLVM provides the llvm-mca tool [9] to analyze machine

code using LLVM’s processor scheduling models. It

retrieves instruction timing, latencies, and throughput for a

given CPU. We used llvm-mca to analyze generated RISC-

V Vector assembly code, measuring cycle counts and

performance estimates for specific target processors.

Example command:

llvm-mca -mtriple=riscv64 -mcpu=<target-cpu> -

iterations=1 < rvv_asm.s > <output.txt>

Results

We compared the performance of a matrix

multiplication kernel, written in reference C code as well as

in C intrinsics of x86 AVX. The reference C code was auto-

vectorized to RVV using LLVM (Generic Flow), and the

intrinsic code was converted to RVV using our Auto-re-

vectorization tool (for targets SiFive X280 and P670). We

compared the performance of these two RVV assemblies

using the llvm-mca tool. The results are given below:

Table 1: Matmul performance comparison.

Target

Processor

Generic

Flow

(cycles)

Auto Re-

Vectorization

Flow

(cycles)

Performance

Gain

SiFive

X280

548 315 1.74 x

SiFive

P670

91 52 1.75 x

We see that the performance of the code generated by

our Auto-re-vectorization tool is better than the auto-

vectorized code generated from reference C code. We intend

to do similar comparison of more kernel types, which is

expected to give even better results, since matrix

multiplication is well optimized in compilers compared to

other compute kernels.

Comparison with Alternative Approaches

There are couple of open-source tools available for

converting x86 SSE code and ARM Neon code to RVV code

[6, 7]. They use an alternative approach for this conversion.

They replace the intrinsic headers with the corresponding

implementation using RVV or C code wherever there is no

one-to-one RVV replacement for the SSE/Neon instructions.

The disadvantage of this approach is that a separate

implementation of the header is required for each different

version of the ISA, while our approach leverages the LLVM

infrastructure itself. Also, the header replacement approach

generates one-to-one replacement of the input code, which

might not be the optimal RVV code for a given Vector

microarch. Our approach leverages LLVM infrastructure to

do optimizations suitable for the given target Vector

microarchitecture.

References

[1] https://github.com/flame/blis

[2] http://www.openmathlib.org/OpenBLAS/

[3] https://eigen.tuxfamily.org/

[4] Alireza Khadem, Daichi Fujiki, Nishil Talati, Scott

Mahlke,Reetuparna Das, “Vector-Processing for Mobile

Devices: Benchmark and Analysis”, In Proceedings of the

IEEE International Symposium on Workload

Characterization (IISWC), Oct. 2023

[5] C. Mendis, A. Jain, P. Jain, and S. Amarasinghe,

“Revec: Program rejuvenation through revectorization,” in

Proceedings of the 28th International Conference on

Compiler Construction, ser. CC 2019. New York, NY, USA:

Association for Computing Machinery, 2019, p.29–41. doi:

10.1145/3302516.33073572

[6] https://github.com/pattonkan/sse2rvv

[7] https://github.com/howjmay/neon2rvv

[8] SiFive Recode: https://www.sifive.com/software

[9] https://llvm.org/docs/CommandGuide/llvm-mca.html

https://github.com/flame/blis
http://www.openmathlib.org/OpenBLAS/
https://eigen.tuxfamily.org/
https://github.com/pattonkan/sse2rvv
https://github.com/howjmay/neon2rvv
https://www.sifive.com/software
https://llvm.org/docs/CommandGuide/llvm-mca.html

