
Vectorization and Optimization of Gradient
Boost Libraries for EUPilot VEC Chiplet

Ali Serdar Atalay1, Orkun Hasekioğlu2, Muhammed Enis Şen1 and Şener Özönder3

11AI4SEC OÜ, Tallinn, Estonia
2TUBITAK Fundamental Sciences Research Institute, Turkey

3Institute for Data Science & Artificial Intelligence, Boğaziçi University

Abstract

The increasing demand for efficient and accurate machine learning algorithms in various fields, including drug
discovery, has led to a growing interest in optimizing gradient boost libraries for specialized hardware architectures.
Various vectorization techniques, including loop unrolling to reduce overhead, data parallelism for simultaneous
processing of multiple data elements, and instruction-level parallelism to execute multiple instructions per clock
cycle, along with SIMD and SIMT, can be employed to enhance performance. By leveraging these vectorization
techniques, the XGBoost library is optimized to achieve significant performance gains on a RISC-V platform
representative of future integration with the EUPilot VEC chiplet, a cutting-edge, low-power, and highly scalable
vector processing unit designed to accelerate machine learning workloads, which is a key component of the
EUPilot Horizon Europe project, aiming to develop a scalable and energy-efficient computing platform. The
optimized libraries demonstrate significant improvements in computational efficiency, enabling faster and more
accurate predictions. Specifically, manual vectorization using intrinsics as well as automated vectorization tools
and techniques are employed to optimize the computationally intensive loops in Gradient Boosting Algorithms.
Our work is compared with non-optimized versions, and the results are analyzed in terms of performance gain,
accuracy, and computational efficiency.

Introduction
The increasing demand for efficient and accurate ma-
chine learning algorithms is driving the exploration of
specialized hardware architectures to accelerate com-
putationally intensive workloads. Gradient Boosting
Algorithms (GBA) [1], such as XGBoost, have demon-
strated remarkable predictive power in this domain,
but their performance can be significantly improved by
leveraging hardware-specific optimizations. This work
targets the RISC-V VEC chiplet, a vector accelerator
integrated into the EUPilot’s platform [2], and focuses
on optimizing GBAs for its long vector length and
custom intrinsics. We investigate manual vectoriza-
tion using intrinsics and compiler-assisted automatic
vectorization to accelerate the most intensive loops.
Our implementation is benchmarked on publicly avail-
able datasets, where inference speed, throughput, and
energy efficiency are all critical.

To fully exploit the VEC chiplet’s projected capa-
bilities, we analyze memory access patterns, data lay-
out, and vector instruction utilization. The resulting
implementation demonstrates notable gains in both
runtime and performance-per-watt, offering insights
into effective co-design strategies for machine learning
workloads on VEC chiplets.

Methodology
The optimization process began with profiling the
baseline implementation to identify performance bot-

tlenecks. Over 70% of execution time was concentrated
in tree traversal and prediction accumulation routines,
which relied on scalar operations with sequential fea-
ture loading and node comparisons. These routines
exhibited three properties ideal for vectorization: reg-
ular memory access, independent comparisons across
nodes, and a high ratio of computations to memory
loads.

Based on these insights, the core prediction logic
was redesigned for vectorized execution. Feature ac-
cess was reorganized to enable stride-based memory
operations, and scalar comparisons were replaced with
vectorized threshold checks using mask-based logic.
Conditional branches were eliminated through vector
predication, and prefetch buffers were introduced to
reduce memory access latency. The architecture’s dy-
namic vector length feature was leveraged to adapt
processing width at runtime, improving overall utiliza-
tion of vector lanes.

To fully exploit the available hardware capabilities,
manual vectorization was applied using low-level vector
intrinsics for gather, scatter, and masked operations.
These were supported by automated vectorization en-
abled through compiler tuning and loop restructuring.
Special attention was given to cache-aligned stride
patterns, minimizing memory traffic, and maximizing
arithmetic throughput.

Figure 1 illustrates this transformation. On the left,
the scalar baseline processes one sample at a time, with

RISC-V Summit Europe, Paris, 12-15th May 2025 1



Table 1: Performance comparison of scalar vs. vectorized implementations across different compute configurations.

Configuration Metric Scalar Vectorized

Single Core

Branch Mispredict Rate 15% 12%
Cache Misses (per 1K Instr.) 50 35
Memory Latency (cycles) 200 150
Throughput (pred/s) 800 3,200

64 Core

Throughput (pred/s) 51,200 204,800
Bandwidth Utilization 40 GB/s (40%) 120 GB/s (60%)
L3 Cache Hit Rate 55% 70%
Core Utilization 70% 75%
Power Efficiency (pred/W) 2.5 4.0

4 Node
Total Throughput 204,800 655,360
Scaling Efficiency 85% 80%

Figure 1: Comparison between scalar (left) and vectorized
(right) prediction paths.

nested loops handling feature gathering, threshold com-
parison, and tree traversal in a sequential manner. On
the right, the optimized vectorized approach operates
on data blocks, setting a dynamic vector length and
loading features using stride-aligned gather operations.
Vector masks replace branching logic, allowing simul-
taneous evaluation of multiple nodes. Intermediate
results are prefetched and accumulated using hard-
ware scatter instructions. At the bottom, the diagram
highlights memory optimizations including coalesced
access, buffer reuse, and aligned stride patterns that
reduce cache misses and bandwidth pressure.

Results
The final implementation was evaluated on the Google
Universal Image Embedding dataset [3], using the
Milk-V Pioneer platform [4], which features a 64-core
RISC-V CPU powered by the SOPHON SG2042. Per-
formance was assessed using metrics such as inference
speed, vector utilization, cache hit rate, memory band-
width, and energy per operation. Iterative refinements
in memory layout, instruction placement, and prefetch
tuning led to significant improvements in throughput
and efficiency.

As shown in Table 1, the vectorized implementa-

tion achieved a 4× increase in single-core through-
put, reduced cache misses and memory latency by
30% and 25%, and improved IPC from 0.8 to 1.2
with 65% vector unit utilization. On a 64-core node,
these gains scaled effectively, quadrupling throughput
and increasing memory bandwidth utilization to 60%,
while improving power efficiency from 2.5 to 4.0 pre-
dictions per watt. The 4-node setup sustained a 3.2×
speedup, reaching over 655,000 predictions per second
with strong scaling efficiency. These results demon-
strate the effectiveness of vectorization in accelerating
gradient boosting on such architectures.

Discussion & Conclusion
This work highlights the potential of low-level vec-
torization techniques to enhance the performance of
GBAs on VEC chiplets. By examining the VEC
chiplet’s vector capabilities and combining manual
intrinsics with automated compiler optimizations, we
significantly enhanced the performance of gradient
boosting algorithms without sacrificing accuracy or
scalability. The results highlight the importance of
hardware-aware code transformation, particularly in
memory-bound workloads where stride-based access
and predicated vector operations can substantially
reduce bottlenecks.

Future work involves staged validation starting with
commercial RISC-V nodes, FPGA emulation, and
finally a full VEC-based HPC system under EUPilot.

References

[1] Evgeny Kozinov et al. “Vectorization of Gradient Boosting
of Decision Trees Prediction in the CatBoost Library for
RISC-V Processors”. In: arXiv preprint arXiv:2405.11062
(2024).

[2] EUPilot, The European PILOT project has received fund-
ing from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement No 101034126.
url: https://eupilot.eu/.

[3] Google Research and Kaggle. Google Universal Image Em-
bedding. https://www.kaggle.com/competitions/google-
universal-image-embedding. 2022.

[4] Milk-V Pioneer. https://milkv.io/pioneer. 2024.

2 RISC-V Summit Europe, Paris, 12-15th May 2025

https://eupilot.eu/
https://www.kaggle.com/competitions/google-universal-image-embedding
https://www.kaggle.com/competitions/google-universal-image-embedding
https://milkv.io/pioneer

	Introduction
	Methodology
	Results
	Discussion & Conclusion

