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Introduction

    The increasing demand for efficient and accurate machine learning algorithms 
is driving the exploration of specialized hardware architectures to accelerate 
computationally intensive workloads. Gradient Boosting Algorithms (GBA) [1], 
such as XGBoost, have demonstrated remarkable predictive power in this 
domain, but their performance can be significantly improved by leveraging 
hardware-specific optimizations. This work targets the RISC-V VEC chiplet, a 
vector accelerator integrated into the EUPilot's platform [2], and focuses on 
optimizing GBAs for its long vector length and custom intrinsics. We investigate 
manual vectorization using intrinsics and compiler-assisted automatic 
vectorization to accelerate the most intensive loops. Our implementation is 
benchmarked on publicly available datasets, where inference speed, throughput, 
and energy efficiency are all critical.
    
    To fully exploit the VEC chiplet’s projected capabilities, we analyze memory 
access patterns, data layout, and vector instruction utilization. The resulting 
implementation demonstrates notable gains in both runtime and performance-
per-watt, offering insights into effective co-design strategies for machine learning 
workloads on specialized RISC-V systems.

Methodology

    

    
    

    Figure 1 illustrates this transformation. On the left, the scalar baseline 
processes one sample at a time, with nested loops handling feature gathering, 
threshold comparison, and tree traversal in a sequential manner. On the right, 
the optimized vectorized approach operates on data blocks, setting a dynamic 
vector length and loading features using stride-aligned gather operations. Vector 
masks replace branching logic, allowing simultaneous evaluation of multiple 
nodes. Intermediate results are prefetched and accumulated using hardware 
scatter instructions. At the bottom, the diagram highlights memory optimizations 
including coalesced access, buffer reuse, and aligned stride patterns that reduce 
cache misses and bandwidth pressure.
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Results

Performance comparison of scalar vs. vectorized implementations across 
different compute configurations.

Table 1 :

    The final implementation was evaluated on the Google Universal Image 
Embedding dataset [3], using the Milk-V Pioneer platform [4], which features a 
64-core RISC-V CPU powered by the SOPHON SG2042. Performance was 
assessed using metrics such as inference speed, vector utilization, cache hit 
rate, memory bandwidth, and energy per operation. Iterative refinements in 
memory layout, instruction placement, and prefetch tuning led to significant 
improvements in throughput and efficiency. 

Discussion & Conclusion

Comparison of Scalar vs. Vectorized Prediction Paths in GBATable 2 :

    This work highlights the potential of low-level vectorization techniques to 
enhance the performance of GBAs on VEC chiplets. By examining the VEC 
chiplet’s vector capabilities and combining manual intrinsics with automated 
compiler optimizations, we significantly enhanced the performance of gradient 
boosting algorithms without sacrificing accuracy or scalability. The results 
highlight the importance of hardware-aware code transformation, particularly in 
memory-bound workloads where stride-based access and predicated vector 
operations can substantially reduce bottlenecks.
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