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Introduction ________ Results

The increasing demand for efficient and accurate machine learning algorithms Table 1 : Performance comparison of scalar vs. vectorized implementations across
is driving the exploration of specialized hardware architectures to accelerate different compute configurations.
computationally intensive workloads. Gradient Boosting Algorithms (GBA) [1],

such as XGBoost, have demonstrated remarkable predictive power in this Conflauration Mot e Vectortaed
domain, but their performance can be significantly improved by leveraging Branch Mispredict Rate 1% 12%
hardware-specific optimizations. This work targets the RISC-V VEC chiplet, a Single Core e Misses (per I Instr.) 50 35
vector accelerator integrated into the EUPIilot's platform [2], and focuses on Memory Latency (cycles) 200 150
optimizing GBAs for its long vector length and custom intrinsics. We investigate Throughput (pred/s) 800 3,200
manual vectorization using intrinsics and compiler-assisted automatic Throughput (pred/s) 51,200 204,300
vectorization to accelerate the most intensive loops. Our implementation is Bandwidth Utilization 40 GB/s (40%) 120 GB/s (60%)
benchmarked on publicly available datasets, where inference speed, throughput, 64 Core L3 Cache Hit Rate 55% 70%
and energy efficiency are all critical. Core Utilization 0% 50
Power Efficiency (pred/W) 2.5 4.0

To fully exploit the VEC chiplet’s projected capabilities, we analyze memory
access patterns, data layout, and vector instruction utilization. The resulting 4 Node
implementation demonstrates notable gains in both runtime and performance-
per-watt, offering insights into effective co-design strategies for machine learning
workloads on specialized RISC-V systems. The final implementation was evaluated on the Google Universal Image

Embedding dataset [3], using the Milk-V Pioneer platform [4], which features a
64-core RISC-V CPU powered by the SOPHON SG2042. Performance was
assessed using metrics such as inference speed, vector utilization, cache hit

MethOdOIOgy rate, memory bandwidth, and energy per operation. Iterative refinements in
memory layout, instruction placement, and prefetch tuning led to significant
improvements in throughput and efficiency.

Total Throughput 204,800 655,360
Scaling Efficiency 85% 80%
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Figure 1: Comparison between scalar (left) and vectorized (right) prediction paths.
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Figure 1 illustrates this transformation. On the left, the scalar baseline . .
processes one sample at a time, with nested loops handling feature gathering, Prefetching None e oot pegago preiCtCnE
threshold comparison, and tree traversal in a sequential manner. On the right, . .
the optimized vectorized approach operates on data blocks, setting a dynamic Batch Size Handling  Fixed-size, one-at-a-time fgg;ﬁ%ﬁtéﬁg" pi-vsetvl)
vector length and loading features using stride-aligned gather operations. Vector . _
masks replace branching logic, allowing simultaneous evaluation of multiple gjgiggsri‘gal Feature g alar loop or set search gectgme@ category check (e.g.,
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nodes. Intermediate results are prefetched and accumulated using hardware _ — .
scatter instructions. At the bottom, the diagram highlights memory optimizations i‘ji“afgzgi‘;fe Static logic El‘;f;fllgme metrics guide adaptive
including coalesced access, buffer reuse, and aligned stride patterns that reduce
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Algorithm 1 Vectorized Prediction with Stride-based Tree Traversal Scalability (batch size, o, Excellent — vector units, large
1: Set vector length based on sample size core count) o batches, parallel threads
2: Compute stride indices for vectorized access
3: for each decision tree in the ensemble do This work highlights the potential of low-level vectorization techniques to
4: Prefetch thresholds, child 11’1d1C€S, and leaf values for the tree enhance the performance Of GBAS on VEC Ch|p|ets By examining the VEC
’ forlﬁa‘??tbf(:k of samples df - chiplet’s vector capabilities and combining manual intrinsics with automated
' HOLSLEN UPCOTHILS HIPHS 1eabies compiler optimizations, we significantly enhanced the performance of gradient
7: Gather feature values using stride-based access b f | th thout T lability. Th it
q. Initialize current nodes to root for all samples oosting algorithms without sacrificing accuracy or scalability. The results
0. while any node is not a leaf do highlight the importance of hardware-aware code transformation, particularly in
10: for each feature block do memory-bound workloads where stride-based access and predicated vector
11: Prefetch thresholds and child indices for next level operations can substantially reduce bottlenecks.
12: Compare feature values with thresholds
13: Use comparison result to choose left or right child
14: Update current nodes
15 end for References
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