Vectorization and Optimization of Gradient
4 Boost Libraries for EUPilot VEC Chiplet

RISC-\/’ Ali Serdar Atalay', Orkun Hasekioglu?>, Muhammed Enis Sen' and Sener Ozénder’

1AI4SEC OU, Tallinn, Estonia
2 TUBITAK Fundamental Sciences Research Institute, Turkey
3 Institute for Data Science Atrtificial Intelligence, Bogazigi University

Introduction ________ Results

The increasing demand for efficient and accurate machine learning algorithms Table 1 : Performance comparison of scalar vs. vectorized implementations across
is driving the exploration of specialized hardware architectures to accelerate different compute configurations.
computationally intensive workloads. Gradient Boosting Algorithms (GBA) [1],

such as XGBoost, have demonstrated remarkable predictive power in this Conflauration Mot e Vectortaed
domain, but their performance can be significantly improved by leveraging Branch Mispredict Rate 1% 12%
hardware-specific optimizations. This work targets the RISC-V VEC chiplet, a Single Core e Misses (per I Instr.) 50 35
vector accelerator integrated into the EUPIilot's platform [2], and focuses on Memory Latency (cycles) 200 150
optimizing GBAs for its long vector length and custom intrinsics. We investigate Throughput (pred/s) 800 3,200
manual vectorization using intrinsics and compiler-assisted automatic Throughput (pred/s) 51,200 204,300
vectorization to accelerate the most intensive loops. Our implementation is Bandwidth Utilization 40 GB/s (40%) 120 GB/s (60%)
benchmarked on publicly available datasets, where inference speed, throughput, 64 Core L3 Cache Hit Rate 55% 70%
and energy efficiency are all critical. Core Utilization 0% 50
Power Efficiency (pred/W) 2.5 4.0

To fully exploit the VEC chiplet’s projected capabilities, we analyze memory
access patterns, data layout, and vector instruction utilization. The resulting 4 Node
implementation demonstrates notable gains in both runtime and performance-
per-watt, offering insights into effective co-design strategies for machine learning
workloads on specialized RISC-V systems. The final implementation was evaluated on the Google Universal Image

Embedding dataset [3], using the Milk-V Pioneer platform [4], which features a
64-core RISC-V CPU powered by the SOPHON SG2042. Performance was
assessed using metrics such as inference speed, vector utilization, cache hit

MethOdOIOgy rate, memory bandwidth, and energy per operation. Iterative refinements in
memory layout, instruction placement, and prefetch tuning led to significant
improvements in throughput and efficiency.

Total Throughput 204,800 655,360
Scaling Efficiency 85% 80%

N

Node 1 Node 2 Node 3 Node 4
-
foreach catabiock 64 Core CPU 64 Core CPU 64 Core CPU 64 Core CPU
Set Dynamic Vector Length
(epi_vsetvl) 128 GB 128 GB 128 GB 128 GB
for each sample Coalesced Memory Access = 3200mhz 3200mhz 3200mhz 3200mhz
Stride Aligned Buffer Reuse { Memory Memory Memory Memory
? | | | |
]
| : ¢
"
Threshold ' H . e - -
Comparison 5 | | Figure 2:4 Node Milk-V Pioneer Cluster in BSC
E Gather Features* Vectorized Categorical Match
' (epi_vgather) (mask logic)
Gather Next Node E 1 '
] (]
VS. ' c ' m = =
Vector Comparison [' D & I
E Cepivit) ISCUSSION Conclusion
]
' No I
; }
. H [L] [] [] "
Yes § ; Gather* Next Node [l Check If Table 2 : Comparison of Scalar vs. Vectorized Prediction Paths in GBA
]
Gather Leaf Value ' Yes \
]
[]
‘ E Gather Leaf Values* Features Scalar Approach Vectorized Approach
' (epi_vgather)
' . : . anes process multiple samples
paltles ' ‘ Execution Style Per-sample, serial evaluation . P b b
' in parallel
L e e e e e ettttetcsscaas Scatter Results*
. J (epi_vscatter)
Feature Gathering Manual access using looped FVec epi_vload, gathered via vector index
Scalar Scrlpt * Stride-based Gather & Scatter indices : [0, stride, 2*stride, 3*stride, ...]
) epi_vfcmp, parallel element-wise
\ / Comparison Scalar if (val < threshold) P P, P

mask

Vectorized & Optimized Script

epi_vmerge, mask-select for both

Child Node Selection Branch-based (if-else) per sample paths

: prefetch operation . : gather block . : scatter block . : threshold comparison

Vectorized mask logic + loop

Leaf Check Per-sample test on node flags condition for all lanes

Figure 1: Comparison between scalar (left) and vectorized (right) prediction paths.

Memory Access Stride-aligned buffers, coalesced

Irregular, cache-unaware

_ _ _ _ _ Pattern gather /scatter
Figure 1 illustrates this transformation. On the left, the scalar baseline . .
processes one sample at a time, with nested loops handling feature gathering, Prefetching None e oot pegago preiCtCnE
threshold comparison, and tree traversal in a sequential manner. On the right, . .
the optimized vectorized approach operates on data blocks, setting a dynamic Batch Size Handling Fixed-size, one-at-a-time fgg;ﬁ%ﬁtéﬁg" pi-vsetvl)
vector length and loading features using stride-aligned gather operations. Vector . _
masks replace branching logic, allowing simultaneous evaluation of multiple gjgiggsri‘gal Feature g alar loop or set search gectgme@ category check (e.g.,
_ _ g roadcasting & masked eq)
nodes. Intermediate results are prefetched and accumulated using hardware _ — .
scatter instructions. At the bottom, the diagram highlights memory optimizations i‘ji“afgzgi‘;fe Static logic El‘;f;fllgme metrics guide adaptive
including coalesced access, buffer reuse, and aligned stride patterns that reduce
CaChe mI sses and ban dWl dth preSSU re Compute Utilization Low — branch-heavy, pipeline stalls High — branchless logic via mask ops
Scatter to Output Direct assignment: epi_vscatter for aligned SIMD
out_pred[i] = leaf val write
Algorithm 1 Vectorized Prediction with Stride-based Tree Traversal Scalability (batch size, o, Excellent — vector units, large
1: Set vector length based on sample size core count) o batches, parallel threads
2: Compute stride indices for vectorized access
3: for each decision tree in the ensemble do This work highlights the potential of low-level vectorization techniques to
4: Prefetch thresholds, child 11’1d1C€S, and leaf values for the tree enhance the performance Of GBAS on VEC Ch|p|ets By examining the VEC
’ forlﬁa‘??tbf(:k of samples df - chiplet’s vector capabilities and combining manual intrinsics with automated
' HOLSLEN UPCOTHILS HIPHS 1eabies compiler optimizations, we significantly enhanced the performance of gradient
7: Gather feature values using stride-based access b f | th thout T lability. Th it
q. Initialize current nodes to root for all samples oosting algorithms without sacrificing accuracy or scalability. The results
0. while any node is not a leaf do highlight the importance of hardware-aware code transformation, particularly in
10: for each feature block do memory-bound workloads where stride-based access and predicated vector
11: Prefetch thresholds and child indices for next level operations can substantially reduce bottlenecks.
12: Compare feature values with thresholds
13: Use comparison result to choose left or right child
14: Update current nodes
15 end for References
16: end while

17: Gather leaf values based on final nodes [1] Evgeny Kozinov et al. “Vectorization of Gradient Boosting of Decision Trees Prediction in the CatBoost
18- Writ dict; back usine stride-based scatt Library for RISC-V Processors”. In: arXiv preprint arXiv:2405.11062 (2024).
10: end fl;re DHECIELONS DAtk HBHHE SHACE-DASCE Seattet [2] EUPIlot, The European PILOT project has received funding from the European High-Performance

L Computing Joint Undertaking (JU) under grant agreement No 101034126. url: https://eupilot.eu/.

20: end for [R Faad [3] Google Research and Kaggle. Google Universal Image Embedding. https://www.kaggle.com/competitions/
googleuniversal-image-embedding. 2022.

[4] Milk-V Pioneer. https://milkv.io/pioneer. 2024.

