
Vectorization and Optimization of Gradient
Boost Libraries for EUPilot VEC Chiplet
Ali Serdar Atalay , Orkun Hasekioğlu , Muhammed Enis Şen and Şener Özönder 1 1 32

1
2

3

AI4SEC OÜ, Tallinn, Estonia
TUBITAK Fundamental Sciences Research Institute, Turkey

Institute for Data Science Artificial Intelligence, Boğaziçi University

Introduction

 The increasing demand for efficient and accurate machine learning algorithms
is driving the exploration of specialized hardware architectures to accelerate
computationally intensive workloads. Gradient Boosting Algorithms (GBA) [1],
such as XGBoost, have demonstrated remarkable predictive power in this
domain, but their performance can be significantly improved by leveraging
hardware-specific optimizations. This work targets the RISC-V VEC chiplet, a
vector accelerator integrated into the EUPilot's platform [2], and focuses on
optimizing GBAs for its long vector length and custom intrinsics. We investigate
manual vectorization using intrinsics and compiler-assisted automatic
vectorization to accelerate the most intensive loops. Our implementation is
benchmarked on publicly available datasets, where inference speed, throughput,
and energy efficiency are all critical.

 To fully exploit the VEC chiplet’s projected capabilities, we analyze memory
access patterns, data layout, and vector instruction utilization. The resulting
implementation demonstrates notable gains in both runtime and performance-
per-watt, offering insights into effective co-design strategies for machine learning
workloads on specialized RISC-V systems.

Methodology

 Figure 1 illustrates this transformation. On the left, the scalar baseline
processes one sample at a time, with nested loops handling feature gathering,
threshold comparison, and tree traversal in a sequential manner. On the right,
the optimized vectorized approach operates on data blocks, setting a dynamic
vector length and loading features using stride-aligned gather operations. Vector
masks replace branching logic, allowing simultaneous evaluation of multiple
nodes. Intermediate results are prefetched and accumulated using hardware
scatter instructions. At the bottom, the diagram highlights memory optimizations
including coalesced access, buffer reuse, and aligned stride patterns that reduce
cache misses and bandwidth pressure.

Comparison between scalar (left) and vectorized (right) prediction paths.Figure 1:

Accumulate Leaf
Values

: prefetch operation : gather block : scatter block : threshold comparison

Results

Performance comparison of scalar vs. vectorized implementations across
different compute configurations.

Table 1 :

 The final implementation was evaluated on the Google Universal Image
Embedding dataset [3], using the Milk-V Pioneer platform [4], which features a
64-core RISC-V CPU powered by the SOPHON SG2042. Performance was
assessed using metrics such as inference speed, vector utilization, cache hit
rate, memory bandwidth, and energy per operation. Iterative refinements in
memory layout, instruction placement, and prefetch tuning led to significant
improvements in throughput and efficiency.

Discussion & Conclusion

Comparison of Scalar vs. Vectorized Prediction Paths in GBATable 2 :

 This work highlights the potential of low-level vectorization techniques to
enhance the performance of GBAs on VEC chiplets. By examining the VEC
chiplet’s vector capabilities and combining manual intrinsics with automated
compiler optimizations, we significantly enhanced the performance of gradient
boosting algorithms without sacrificing accuracy or scalability. The results
highlight the importance of hardware-aware code transformation, particularly in
memory-bound workloads where stride-based access and predicated vector
operations can substantially reduce bottlenecks.

References
[1] Evgeny Kozinov et al. “Vectorization of Gradient Boosting of Decision Trees Prediction in the CatBoost
Library for RISC-V Processors”. In: arXiv preprint arXiv:2405.11062 (2024).
[2] EUPilot, The European PILOT project has received funding from the European High-Performance
Computing Joint Undertaking (JU) under grant agreement No 101034126. url: https://eupilot.eu/.
[3] Google Research and Kaggle. Google Universal Image Embedding. https://www.kaggle.com/competitions/
googleuniversal-image-embedding. 2022.
[4] Milk-V Pioneer. https://milkv.io/pioneer. 2024.

64 Core CPU

128 GB
3200mhz
Memory

Node 1
64 Core CPU

128 GB
3200mhz
Memory

Node 2
64 Core CPU

128 GB
3200mhz
Memory

Node 3
64 Core CPU

128 GB
3200mhz
Memory

Node 4

4 Node Milk-V Pioneer Cluster in BSCFigure 2:

