

Vectorization and Optimization of Gradient Boost Libraries for EUPilot VEC Chiplet

Ali Serdar Atalay¹, Orkun Hasekioğlu², Muhammed Enis Şen¹ and Şener Özönder³

¹AI4SEC OÜ, Tallinn, Estonia
 ² TUBITAK Fundamental Sciences Research Institute, Turkey
 ³ Institute for Data Science Artificial Intelligence, Boğaziçi University

Introduction

The increasing demand for efficient and accurate machine learning algorithms is driving the exploration of specialized hardware architectures to accelerate computationally intensive workloads. Gradient Boosting Algorithms (GBA) [1], such as XGBoost, have demonstrated remarkable predictive power in this domain, but their performance can be significantly improved by leveraging hardware-specific optimizations. This work targets the RISC-V VEC chiplet, a vector accelerator integrated into the EUPilot's platform [2], and focuses on optimizing GBAs for its long vector length and custom intrinsics. We investigate manual vectorization using intrinsics and compiler-assisted automatic vectorization to accelerate the most intensive loops. Our implementation is benchmarked on publicly available datasets, where inference speed, throughput, and energy efficiency are all critical.

Results

Table 1 : Performance comparison of scalar vs. vectorized implementations across different compute configurations.

Configuration	Metric	Scalar	Vectorized
	Branch Mispredict Rate	15%	12%
Single Core	Cache Misses (per 1K Instr.)	50	35
Single Core	Memory Latency (cycles)	200	150
	Throughput (pred/s)	800	$3,\!200$
	Throughput (pred/s)	$51,\!200$	204,800
	Bandwidth Utilization	40 GB/s (40%)	120 GB/s (60%)
64 Core	L3 Cache Hit Rate	55%	70%
	Core Utilization	70%	75%
	Power Efficiency $(pred/W)$	2.5	4.0
4 Node	Total Throughput	$204,\!800$	655,360
4 11006	Scaling Efficiency	85%	80%

To fully exploit the VEC chiplet's projected capabilities, we analyze memory access patterns, data layout, and vector instruction utilization. The resulting implementation demonstrates notable gains in both runtime and performance-per-watt, offering insights into effective co-design strategies for machine learning workloads on specialized RISC-V systems.

The final implementation was evaluated on the Google Universal Image Embedding dataset [3], using the Milk-V Pioneer platform [4], which features a 64-core RISC-V CPU powered by the SOPHON SG2042. Performance was assessed using metrics such as inference speed, vector utilization, cache hit rate, memory bandwidth, and energy per operation. Iterative refinements in memory layout, instruction placement, and prefetch tuning led to significant improvements in throughput and efficiency.

Node 1	Node 2	Node 3	Node 4
64 Core CPU	64 Core CPU	64 Core CPU	64 Core CPU
128 GB 3200mhz Memory	128 GB 3200mhz Memory	128 GB 3200mhz Memory	128 GB 3200mhz Memory

Figure 2:4 Node Milk-V Pioneer Cluster in BSC

Discussion & Conclusion

 Table 2 : Comparison of Scalar vs. Vectorized Prediction Paths in GBA

Figure 1 illustrates this transformation. On the left, the scalar baseline processes one sample at a time, with nested loops handling feature gathering, threshold comparison, and tree traversal in a sequential manner. On the right, the optimized vectorized approach operates on data blocks, setting a dynamic vector length and loading features using stride-aligned gather operations. Vector masks replace branching logic, allowing simultaneous evaluation of multiple nodes. Intermediate results are prefetched and accumulated using hardware scatter instructions. At the bottom, the diagram highlights memory optimizations including coalesced access, buffer reuse, and aligned stride patterns that reduce cache misses and bandwidth pressure.

Features	Scalar Approach	Vectorized Approach	
Execution Style	Per-sample, serial evaluation	SIMD lanes process multiple samples in parallel	
Feature Gathering	Manual access using looped FVec	epi_vload, gathered via vector index	
Comparison	Scalar if (val < threshold)	epi_vfcmp, parallel element-wise mask	
Child Node Selection	Branch-based (if-else) per sample	epi_vmerge, mask-select for both paths	
Leaf Check	Per-sample test on node flags	Vectorized mask logic + loop condition for all lanes	
Memory Access Pattern	Irregular, cache-unaware	Stride-aligned buffers, coalesced gather/scatter	
Prefetching	None	Multi-level lookahead prefetching using epi_prefetch	
Batch Size Handling	Fixed-size, one-at-a-time	Dynamic VL (e.g., epi_vsetvl) adapts to batch	
Categorical Feature Processing	Scalar loop or set search	Vectorized category check (e.g., broadcasting & masked eq)	
Performance Adaptation	Static logic	Runtime metrics guide adaptive tuning	
Compute Utilization	Low – branch-heavy, pipeline stalls	High – branchless logic via mask ops	
Scatter to Output	Direct assignment: out_pred[i] = leaf_val	epi_vscatter for aligned SIMD write	
Scalability (batch size, core count)	Poor	Excellent – vector units, large batches, parallel threads	

3: for each decision tree in the ensemble do

- 4: Prefetch thresholds, child indices, and leaf values for the tree
- 5: **for** each block of samples **do**
- 6: Prefetch upcoming input features
- 7: Gather feature values using stride-based access
- 8: Initialize current nodes to root for all samples
- 9: while any node is not a leaf do
- 10: **for** each feature block **do**
- 11: Prefetch thresholds and child indices for next level
- 12: Compare feature values with thresholds
- 13: Use comparison result to choose left or right child
- 14: Update current nodes
- 15: **end for**
- 16: end while
- 17: Gather leaf values based on final nodes
- 18: Write predictions back using stride-based scatter
- $19: \qquad \mathbf{end} \ \mathbf{for}$

20: **end for**

This work highlights the potential of low-level vectorization techniques to enhance the performance of GBAs on VEC chiplets. By examining the VEC chiplet's vector capabilities and combining manual intrinsics with automated compiler optimizations, we significantly enhanced the performance of gradient boosting algorithms without sacrificing accuracy or scalability. The results highlight the importance of hardware-aware code transformation, particularly in memory-bound workloads where stride-based access and predicated vector operations can substantially reduce bottlenecks.

References

[1] Evgeny Kozinov et al. "Vectorization of Gradient Boosting of Decision Trees Prediction in the CatBoost Library for RISC-V Processors". In: arXiv preprint arXiv:2405.11062 (2024).
[2] EUPilot, The European PILOT project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101034126. url: https://eupilot.eu/.
[3] Google Research and Kaggle. Google Universal Image Embedding. https://www.kaggle.com/competitions/ googleuniversal-image-embedding. 2022.
[4] Milk-V Pioneer. https://milkv.io/pioneer. 2024.

Algorithm 1 Vectorized Prediction with Stride-based Tree Traversal

^{1:} Set vector length based on sample size

^{2:} Compute stride indices for vectorized access