
Further analysis of Vector Mix:
 - Eliminate non-computing instructions like mask creation and data shuffling
 - Compile and run/emulate with rvv1.0 vector specification

Code structure

Powering Plasma-Physics with RISC-V vector extension: the case of Vlasiator

Short reasons for long vectors in HPC CPUs: a study based on RISC-V
DOI: 10.1145/3624062.3624231

Software Development Vehicles to Enable Extended and Early Co-design:
A RISC-V and HPC Case of Study DOI: 10.1007/978-3-031-40843-4_39

European Processor Initiative to deliver a RISC-V based vector accelerator.
We provide a HW and SW ecosystem to enable co-design before the chip arrives.

We also develop an evaluation methodology to study potential optimizations.
Our optimization techniques are CPU-agnostic and provide benefits in other architectures.

{Phases

filter_pqm_monotonicity_Init

filter_pqm_monotonicity_Conditional

compute_pqm_coeff_finalization

compute_filtered_face_values_derivates

propagate_whileInit_and_whileLoop

Code structure

Vector class

Increase Average Vector Length Increase in Vector Instruction Mix

Conclusions and next steps

1 Timestep

10 Timesteps

Powering Plasma-Physics with RISC-V vector extension: the case of Vlasiator

Arguments passed by value

Proposal: Pass arguments by reference

Code analysis

Functions are called back-to-back

Each function call requires
copying arguments{

Metric definition

Iterative structure divided into timesteps

All timesteps have the same structure

Dominant phase is

Compile time parameter VECL

Affects: Problem size

Metric definition

Proposal: Increase VECL to increment
problem size and leverage long vectors{

Original: Written for fixed-length vectors

Extended version: Vector-length agnostic

Vec4Simple

VecX<8>

VecX<16>

Templated C++ class

Defines common vector operations

Vector length is always known at compile time

Vlasiator code heavily depends on Vec

Vector length is no longer limited by
the implementation

1

1 2 3

2

3

1 2 3

a

a

b

b

c
c

VECL <= 64

Mini-app of Vlasiator (subset of full app)

Vlasiator is a novel, computationally intensive simulation that models ions differently for more
accurate, noiseless space weather predictions. Space weather describes the Sun's variable
effects on near-Earth space via solar wind, impacting technology like satellites and power grids.

Urs Ganse
urs.ganse@helsinki.fi

Filippo Mantovani
filippo.mantovani@bsc.es

Marta garcia-Gasulla
marta.garcia@bsc.es

Pablo Vizcaino
pablo.vizcaino@bsc.es

Gerard Oliva (corresponding author)
gerard.oliva@bsc.es

Explicit loopsExplicit loops

Auto-vectorization alone does not provide significant speedup

Adding explicit loops achieves a speedup of slightly more than 4x

Eliminating scalar copies (in addition to explicit loops) increases the speedup to
slightly more than 7x

These speedups were achieved using a vector length of 64 (VECL = 64)
Limiting factor: allow VECL greater than 64
Possible benefit: Avg. VL up to 256

Run the full Vlasiator application to study the effect of optimizations derived from the mini-app

Evaluate portability of code changes to other CPU architectures

Calculated as the ratio of vector
instructions to total instructions,
the vector instruction mix is a
value ranging from 0 to 1
representing the extent to which
code has been vectorized.

The average vector length (AVL)
is a metric representing the
mean number of data elements
operated on per vector
instruction during execution.

