
Accelerating GenAI Workloads by Enabling
RISC-V Microkernel Support in IREE

Adeel Ahmad∗, Ahmad Tameem Kamal, Nouman Amir, Bilal Zafar, Saad Bin Nasir

110xEngineers

Abstract

This project enables RISC-V microkernel support in IREE, a next-generation MLIR-based machine learning
compiler and runtime. The approach begins by enabling the lowering of MLIR contraction ops to microkernel
calls for the RISC-V target within the IREE pass pipeline, followed by the development of hand-optimized and
vectorized microkernels tailored to RISC-V. The performance gains are compared with upstream IREE and
Llama.cpp for the Llama-3.2-1B-Instruct model.

Introduction

As Generative AI (GenAI) models grow in size and
complexity, optimized execution to efficiently utilize
hardware capabilities has become essential. IREE (In-
termediate Representation Execution Environment)[1],
an MLIR-based[2] compiler and runtime, was devel-
oped to deploy machine learning models on various
architectures, such as CPUs, GPUs, and accelerators.
IREE accepts ML workload in the form of MLIR code
as input, applies classical optimizations like operator
fusion and tiling on it, and generates optimized binary
for execution. While the compiler-generated code per-
forms reasonably well in most cases, custom kernels
perform better, particularly in mixed precision cal-
culations. To harness the benefits of custom kernels,
IREE includes a library of hand-optimized, vectorized
microkernels for various CPU and GPU architectures.
IREE includes microkernels for x86 and ARM CPUs,
however, despite the increasing presence of RISC-V in
the AI hardware space, RISC-V microkernels are still
missing. This limitation results in poor performance
of GenAI workloads on RISC-V-based hardware. To
address this issue, this project focuses on enabling
RISC-V microkernel support in IREE.

Theoretical Framework

Matrix multiplication is a critical computation in
GenAI workloads. IREE uses MLIR linalg dialect
contraction ops for matrix multiplication that under-
goes tiling as it progresses through the compilation
pipeline. However, tiled matmul incurs overhead if the
data is not pre-arranged, leading to inefficient mem-
ory access and a high cache miss rate[3]. To address
this, IREE utilizes tensor.pack MLIR operation to
rearrange the data, ensuring that tiles are stored con-
tiguously in memory before applying linalg.mmt4d

∗Corresponding author: adeel.ahmad@10xengineers.ai

for optimized computation. The 4-D matrix produced
by linalg.mmt4d is then converted back to the original
layout, using tensor.unpack operation.

1. tensor.pack : It takes a 2-D matrix and converts
it into a tiled 4-D matrix in which all tiles are
stored contiguously in memory.

2. linalg.mmt4d : It performs matrix multiplica-
tion between 4-D left-hand and right-side matri-
ces, produced by the pack operations. The ‘t‘ in
this stands for the transpose of the right-hand-side
matrix.

3. tensor.unpack : It converts the 4-D result matrix
produced by mmt4d back to 2-D layout.

These MLIR operations are lowered into calls to mi-
crokernels by IREE compilation passes. Even though
IREE’s architecture[4] is purposefully designed to
make it easier for users to integrate arbitrary microker-
nels, currently it only contains microkernels for pack,
unpack, and mmt4d operations, specialized for various
precisions, for both x86 and ARM64. For the RISC-V
target, we have implemented mmt4d microkernels.

Methodology

The proposed methodology can be viewed as a two
step process:

1. The first part involves enabling transformations
of linalg contraction ops to tensor.pack, ten-
sor.unpack and linalg.mmt4d operations. Cur-
rently, the materialization of linalg contrac-
tion ops to linalg.mmt4d (and tensor.pack,
tensor.unpack) is performed within the iree-
codegen-materialize-device-encoding pass.
This pass determines the tile sizes for the M, N,
and K dimensions of the input matrices based
on the target architecture e.g., x86, ARM. For
RISCV, we modified this pass to enable the materi-
alization of contraction ops into linalg.mmt4d and

RISC-V Summit Europe, Paris, France, 12-15th May 2025 1

adeel.ahmad@10xengineers.ai


to perform the VLEN-aware tiling. Once this
materialization is complete, the linalg.mmmt4d
operation would get transformed into calls to the
generic microkernel functions via the subsequent
passes. Tile sizes were selected based on the fol-
lowing strategy:

(a) Prefill: Tile Size= M,N,K=6,VLEN/4,1
(b) Decode: Tile Size=M,N,K=1,VLEN/8,1

It was observed that choosing a smaller tile size
than these leads to underutilization of hardware
registers, while using bigger tile sizes increases
register pressure that causes register spills and
reloads and degrades performance.

2. The second step includes enabling the selection
of the specialized microkernel functions and im-
plementing these functions. We implemented the
selection of microkernel functions based on the tile
sizes and data types of the operands. The mmt4d
microkernels were implemented for the f16xf16-
>f32 case, where rhs and lhs operands are of f16
type and the result operand is of type f32. Sep-
arate mmt4d microkernels were implemented for
LLM’s prefill and decode phases, because prefill
has GEMM while the decode phase has GEMV
computations.

Testing and Performance
Benchmarking

To verify the accuracy of the newly implemented micro-
kernels, we evaluated the Llama-3.2-1B-Instruct model
compiled with our microkernels, using our framework
built on top of LM-Evaluation-Harness[5]. The re-
sults are summarized in Table 1. The model compiled
with 10x-IREE has exactly the same scores as the one
obtained from Huggingface.

Benchmark Huggingface 10x-IREE
ARC_c 59.4% 59.4%
GPQA 27.2% 27.2%

Table 1: Evaluation results of the LLaMA-3.2-1B-Instruct
model on selected benchmarks. The table compares the
performance of two versions of the model: one downloaded
from Hugging Face and the other compiled using 10x-IREE.

For performance benchmarking Llama-3.2-1B-
Instruct model was compiled using 10x-IREE, and
tokens per second were recorded for prefill and decode
phases. The results are summarized in Table 2. For
the single-threaded run, we observed 50x gain in de-
code performance as compared to the upstream IREE.
For multi-threaded run, a performance gain of 2x was

observed in the prefill phase and 17x was observed in
the decode phase.

Phase Threads Llama.cpp IREE 10x-IREE

Prefill
1 0.04 0.14 0.18
8 0.11 0.91 1.89

Decode
1 0.03 0.02 0.99
8 0.07 0.12 2.12

Table 2: Performance(reported as tokens per second) of
the LLaMA-3.2-1B-Instruct model in prefill and decode
stages, compiled using llama.cpp, IREE, and 10x-IREE.
Results are reported for both 1-thread and 8-thread con-
figurations. Benchmarking was conducted on a MILK-V
Jupiter board featuring a 1.66GHz × 8 RISC-V vector cores
system with VLEN=256 and RVA22.

Figure 1: Prefill phase performance comparison between
Llama-3.2-1B-Instruct compiled with IREE and 10x-IREE.
Benchmarking was conducted on a MILK-V Jupiter board
featuring a 1.66GHz × 8 RISC-V vector cores system with
VLEN=256 and RVA22.

Figure 2: Decode phase performance comparison between
Llama-3.2-1B-Instruct compiled with IREE and 10x-IREE.
Benchmarking was conducted on a MILK-V Jupiter board
featuring a 1.66GHz × 8 RISC-V vector cores system with
VLEN=256 and RVA22.

How Would This Enhance the
RISC-V Ecosystem?

This project enhances the performance of AI workloads
compiled using IREE and establishes the foundation
for integrating additional RISC-V microkernels within

2 RISC-V Summit Europe, Paris, France, 12-15th May 2025



the framework. It also serves as a generalized method-
ology, including algorithm design and implementation,
that can be used as a template for writing hand-
optimized and vectorized RISC-V kernels in other
compiler frameworks and kernel libraries. Software
support is essential for hardware adoption. Improved
inference performance would shrink the gap between
RISC-V and other architectures like x86 and ARM
and incentivize chipmakers to develop RISC-V-based
processors and accelerators. Moreover, this project
aims to engage the RISC-V community in expanding
RISC-V support in ML compilers and kernel libraries.

References

[1] IREE. Accessed: Feb. 7, 2025. Feb. 2025. url: https :
//iree.dev/.

[2] Chris Lattner et al. MLIR: A Compiler Infrastructure for
the End of Moore’s Law. 2020. arXiv: 2002.11054 [cs.PL].
url: https://arxiv.org/abs/2002.11054.

[3] Matrix Multiplication with MMT4D. Accessed: Feb. 7, 2025.
Oct. 2021. url: https://iree.dev/community/blog/2021-
10-13-matrix-multiplication-with-mmt4d/.

[4] IREE Source. Github. Accessed: Feb. 7, 2025. Feb. 2025.
url: https://github.com/iree-org/iree.

[5] lm-evaluation-harness Source. Github. Accessed: Feb. 7,
2025. Feb. 2025. url: https://github.com/EleutherAI/
lm-evaluation-harness.

RISC-V Summit Europe, Paris, France, 12-15th May 2025 3

https://iree.dev/
https://iree.dev/
https://arxiv.org/abs/2002.11054
https://arxiv.org/abs/2002.11054
https://iree.dev/community/blog/2021-10-13-matrix-multiplication-with-mmt4d/
https://iree.dev/community/blog/2021-10-13-matrix-multiplication-with-mmt4d/
https://github.com/iree-org/iree
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness

	Introduction
	Theoretical Framework
	Methodology
	Testing and Performance Benchmarking
	How Would This Enhance the RISC-V Ecosystem?

