ACCELERATING GEN-AI WORKLOADS BY ENABLING
RISC-V MICROKERNEL SUPPOR'T IN IREE

Adeel Ahmad, Ahmad Tameem Kamal, Nouman Amir, Bilal Zafar, Saad Bin Nasir

10xEngineers

ABSTRACT

This project enables RISC-V microkernel support in IREE, an MLIR-based machine learning compiler and runtime. The

approach begins by enabling the lowering of MLIR contraction ops to microkernel calls for the RISC-V target within the IREE
pass pipeline, followed by the development of hand-optimized and vectorized microkernels tailored to RISC-V. The performance
gains are compared with upstream IREE and Llama.cpp for the Llama-3.2-1B-Instruct model.

METHODOLOGY

Matrix multiplication is the core computation in Generative Al models as shown in In IREE, Linalg contraction ops are replaced with mmt4d[3] op, which is

Figure 1 subsequently lowered to the ukernel call. . In the case of plain MLIR
amas 24 Bdnstruct | %pack = tensor.pack %0 ... into %3 : linalg.matmul op, memory accesses
| Tnyiamas tensor<256x256xf16> -> tensor<43x256x6x1xf16> are non-contiguous, which leads to a
NSV NS R——— spack_1 = tensor.pack %1 ... into %4 : low cache hit rate when processing

o0 o . MaterializeHostEncod tensor<256x256xf16> -> tensor<8x256x32x1xf16>

g ?gngoﬁiggégéggﬂﬁjns(/olhs, srhs ingPass %pack_2 = tensor.pack %2 ... into %5 : large matrices.
* g tensor‘<256x256xf16>j S (e - :censor‘<.256x256xf32? —>0tensor‘0<43x8x6x32xf32> « To reduce the number of accesses to
* P tensor<256x256xf32>) -> %6 = Linalg.mmt4d ins(%pack, %pack_1 : non-contiguous memory locations, we
3 £oNS0r<256x256%F32o matmul pack. tensor<43x256x6x1xfl6>, tensor<8x256x32x1xfl6>) need to reorder data. IR EE uses
® g) 4d. unnack outs(%pack_2 : tensor<43x8x6x32xf32>) -> : :
o — - s 20 255 matmul.mlir TG, uipac tensor<43x8x6x32xf32> MLIR tensor.pack ops for this.

ntage of Computation Time
tage of Computation Time

Perce

erf) pri %unpack = tensor.unpack %6 ... into %7 : . After packing, elements within each
A A tensor<43x8x6x32xf32> -> tensor<256x256xf32> tile are stored contiguously in memory,
Figure 1: Percentage of time consumed by Matmul ops in prefill and decode and the tiles themselves are laid out ’
stages of Llama-3.2-1B-Instruct (left) and Tiny-Llama-1B (right) - mmt4d CPULowerToUK LowerUKernelOps contiguously with respect to one
. . . 4. . . iree_uk_mmt4d ernelsPass + ToCallsPass
We implemented matrix multiplication ukernels (micro-kernels) for RISC-V target ukernel call another.
. . . ConvertToL LV M Pass :
in IREEJ[1], an MLIR][2] based compiler, and runtime. 1lvm.call @iree uk mmtéd + MLIR linalg.mmt4d op operates on

func.call @iree_uk_mmt4d these packed matrices. This results in

(%base_buffer, %offset, 3 3 9 : a SR
s BvTorch %stride ...) (/obz)ase_buffer, soffset, %stride efficient cache utilization, and
yltorc MLIR IREE /ﬂ‘ _— performance acceleration.
ir\

We enabled the conversion of linalg contraction ops to tensor.pack, linalg. mmt4d and

static linking

« Host/device programming model tensor.unpack ops in MaterializeHostEncodingPass in IREE pass pipeline for RISC-V target.

- Upstream IREE has RVV codegen Selection of VLEN-aware tile sizes was also enabled 1n this pass for RISC-V target, for linalg

thr.ough LI O, contraction ops with operands of types: fl6xf16 32 .
+ Microkernels ice - Tile si lected as per the following strategy:

> Prevents the dichotomy between precomplled ile sizes were selected as per the following strategy:
compiler and kernels IREE ukernel bitcode « For Prefill phase kernel: {M,N,K} = {6, VLEN/S8, 1}

o Perform arithmetic but no Runtime « For Decode phase kernel: {M,N,K} = {1, VLEN/4, 1}
memory allocation . g ukernel_bitcode. *bc Conversion of linalg.mmt4d op to mmt4d ukernel call was handled by subsequent passes as

. Stapdalpne develqp ment and unit E.E R shown in Figure 3. Finally, we implemented mmt4d ukernels targeting RVV that resulted in
csting 1n U1CKEeT nn iIgure3: Transtormation of linalg.matmul op in
testingin C quick W Figure3: Transformation of linalg.matmul op in IREE

LLM performance acceleration on RISC-V hardware.

development
Figure 2: High Level IREE flow

Llama-3.2-1B-Instruct-f16-Prefill

matmul vs mmt4d ukernel (prefill)

IREE-Prefill [} 10x-IREE-Prefill Ll IREE 10 IREE
metmt W mmc 1 MMT4D ukernel for 20 189 188 1ge 186 184 184 15 At LLM level, 2x Phase Threads ARE-EPP upstream ~
11.1 o
= prefill stage performs performance (toks/s) (toks/s) (toks/s)
100 - consistently better 15 improvement was
. . -) 1 0.04 0.14 0.18
than matmul for a 111 observed in the Prefill
= o ® .
_eo ' range of matrix sizes @ refill phase for
¢ s 10 pretiii b Q 0.11 0.91 1.89
S 4o 46 £ multi-threaded '
? 2.0 19 24 22 . 0.5 runs
00 16 17 ' 018 Decode 1 0’03 0.02 099
> SN G O (N > © a2
% N «b'«ﬁb qf?\ R NS & @,\q .
e rﬁb\m v}’"% 3 o W @q@ 0.0 0.07
< & 3 " N X 1 4 8 12 16 20 24 28 32 : 0.12 2.12
A h S) . At kernel level, mmt4d 8
Matrbx Dims {M.N.K} for deCOdF seems to Number of Threads Table 1: Performance comparison between Llama.cpp, upstream IREE and 10x-IREE for Llama-
| 4d uk (d d Ccausc pCI: ormance Llama-3.2-1B-Instruct-f16-Decode At LLM level, 3.2-1B-Instruct model, benchmarking performed on MILK-V Jupiter board with 1.6GHz x 8 RVV
matmul vs mmt4d ukernel (decode) degradation £ cores, VLEN=256, RVA22
matmul [l mmt4d o Smaller matrices leSS IREE-decode [l 10xIREE-Decode : SOX PSS ’ ,
. : ¢ cache m - improvement was
: impact of cache misses | 212 214 212 b i
14 201 : ' 1.99 2.04 2.06 201 oDServed 1 0 . . .
pqck op cost . evadle s o 86.5 /0.0f the co.mputatlon time 1s consumed by pack ops
single threade : : ,
[1.0 0 C » Th ted onl d fill and t
. . Here, >60% of execution < 15 uns ese ops are executed only once, during prefill and aren’t
§ . time is consumed by pack X N 0.99 . 17x perfromance executed in decode at all, leading to higher performance gains in
o = .
s 0.0 O o8 o4 op, in real models pack o improvement was decode. |
g gy ™ 03 o2 l cost can be evaded 05 observed in These pack ops can })e eyaluated at c.ompll.e-tlme by enabling
R T A leading to performance fesode Hiess T const-eval optimization in IREE, which will lead to further
o O & g X % ©° 0 0.0 1 I
¢ R boost! 1 y " T T EEE S multicthreaded accleration of prefill phase.
Matrix Dims {M,N,K} Number of Threads FUS

Figure 4 : Performance comparison between upstream IREE and 10x-IREE,
benchmarking performed on MILK-V Jupiter board with 1.6GHz x 8 RVV cores, VLEN=256, RVA22

Custom matrix mUItiplicatiOn micro-ker nels, targeting RVV, [1] IREE. Accessed: Feb. 7, 2025. Feb. 2025. url: https://iree.dev/

. . . : . . [2] Chris Lattner et al. MLIR: A Compiler Infrastructure for the End of Moore’s Law. 2020. arXiv:
WCTC lmplemented 11 IREE» I'GSllltlIlg In 2x lmprovement m 2002.11054 [cs.PL]. url: https://arxiv.org/abs/2002.11054
preflll phase performance and 50x improvement in decode phase [3] Matrix Multiplication with MMT4D. Accessed: Feb. 7, 2025. Oct. 2021. url:

. . o https://iree.dev/community/blog/2021-10-13- matrix-multiplication-with-mmt4d/
performance. One-time data prepacking cost 1s incurred on

the first token generation during the prefill, and can be evaded : / RISC-V

SUMMIT 107(

. EveopE ENGINEERS

1f const-eval optimization 1s implemented in IREE.

https://iree.dev/community/blog/2021-10-13-matrix-multiplication-with-mmt4d/

