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ABSTRACT

This project enables RISC-V microkernel support in IREE, an MLIR-based machine learning compiler and runtime. The

approach begins by enabling the lowering of MLIR contraction ops to microkernel calls for the RISC-V target within the IREE
pass pipeline, followed by the development of hand-optimized and vectorized microkernels tailored to RISC-V. The performance
gains are compared with upstream IREE and Llama.cpp for the Llama-3.2-1B-Instruct model.
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1f const-eval optimization 1s implemented in IREE.
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