
MMT4D ukernel for
prefill stage performs
consistently better
than matmul for a
range of matrix sizes

At kernel level, mmt4d
for decode seems to
cause performance
degradation
Smaller matrices → less
impact of cache misses
→ pack op cost
dominates in mmt4d
Here, >60% of execution
time is consumed by pack
op, in real models pack
cost can be evaded
leading to performance
boost!

At LLM level, 2x
performance
improvement was
observed in the
prefill phase for
multi-threaded
runs

At LLM level,
50x perfromance
improvement was
observed in
decode phase for
single threaded
runs
17x perfromance
improvement was
observed in
decode phase for
multi-threaded
runs

Phase Threads
Llama.cpp

(toks/s)
IREE upstream

(toks/s)
10x-IREE

(toks/s)

Prefill 

Decode

1

8

1

8

0.04 0.14 0.18

0.11

0.03

0.07

0.91

0.02

0.12

1.89

0.99

2.12

Table 1: Performance comparison between Llama.cpp, upstream IREE and 10x-IREE for Llama-
3.2-1B-Instruct model, benchmarking performed on MILK-V Jupiter board with 1.6GHz x 8 RVV

cores, VLEN=256, RVA22 

86.5% of  the computation time is consumed by pack ops
operating on weight tensors. 
These ops are executed only once, during prefill and aren’t
executed in decode at all, leading to higher performance gains in
decode.
These pack ops can be evaluated at compile-time by enabling
const-eval optimization in IREE, which will lead to further
accleration of prefill phase.

MLIR IREE VMFB

IREE
Runtime

Host/device programming model
 Upstream IREE has RVV codegen
through LLVM
Microkernels

Prevents the dichotomy between
compiler and kernels
Perform arithmetic but no
memory allocation
Standalone development and unit
testing in C → quicker
development

ACCELERATING GEN-AI WORKLOADS BY ENABLING
RISC-V MICROKERNEL SUPPORT IN IREE

RESULTS

CONCLUSION

Adeel Ahmad, Ahmad Tameem Kamal, Nouman Amir, Bilal Zafar, Saad Bin Nasir
 10xEngineers

ABSTRACT
This project enables RISC-V microkernel support in IREE, an MLIR-based machine learning compiler and runtime. The
approach begins by enabling the lowering of MLIR contraction ops to microkernel calls for the RISC-V target within the IREE
pass pipeline, followed by the development of hand-optimized and vectorized microkernels tailored to RISC-V. The performance
gains are compared with upstream IREE and Llama.cpp for the Llama-3.2-1B-Instruct model. 
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Custom matrix multiplication micro-kernels, targeting RVV,
were implemented in IREE, resulting in 2x improvement in
prefill phase performance and 50x improvement in decode phase
performance. One-time data prepacking cost is incurred on
the first token generation during the prefill, and can be evaded
if const-eval optimization is implemented in IREE.
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Matrix multiplication is the core computation in Generative AI models as shown in
Figure 1

Figure 1 : Percentage of time consumed by Matmul ops in prefill and decode
stages of Llama-3.2-1B-Instruct (left) and  Tiny-Llama-1B (right)

We implemented matrix multiplication ukernels (micro-kernels) for RISC-V target
in IREE[1], an MLIR[2] based compiler, and runtime.

Host

Device

In IREE, Linalg contraction ops are replaced with mmt4d[3] op, which is
subsequently lowered to the ukernel call.  

%pack = tensor.pack %0 ... into %3 :
tensor<256x256xf16> -> tensor<43x256x6x1xf16>
%pack_1 = tensor.pack %1 ... into %4 :
tensor<256x256xf16> -> tensor<8x256x32x1xf16>
%pack_2 = tensor.pack %2 ... into %5 :
tensor<256x256xf32> -> tensor<43x8x6x32xf32>
%6 = linalg.mmt4d ins(%pack, %pack_1 :
tensor<43x256x6x1xf16>, tensor<8x256x32x1xf16>)
outs(%pack_2 : tensor<43x8x6x32xf32>) ->
tensor<43x8x6x32xf32>
%unpack = tensor.unpack %6 ... into %7 :
tensor<43x8x6x32xf32> -> tensor<256x256xf32>

%0 = linalg.matmul ins(%lhs, %rhs :
tensor<256x256xf16>,
tensor<256x256xf16>) outs(%acc :
tensor<256x256xf32>) ->
tensor<256x256xf32> 
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func.call @iree_uk_mmt4d
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Figure 2: High Level IREE flow

We enabled the conversion of linalg contraction ops to tensor.pack, linalg.mmt4d and
tensor.unpack ops in MaterializeHostEncodingPass in IREE pass pipeline for RISC-V target.
Selection of VLEN-aware tile sizes was also enabled in this pass for RISC-V target, for linalg
contraction ops with operands of types: f16xf16→f32 . 
Tile sizes were selected as per the following strategy:

For Prefill phase kernel: {M,N,K} = {6, VLEN/8, 1}
For Decode phase kernel: {M,N,K} =  {1, VLEN/4, 1}

Conversion of linalg.mmt4d op to mmt4d ukernel call was handled by subsequent passes as
shown in Figure 3. Finally, we implemented mmt4d ukernels targeting RVV that resulted in
LLM performance acceleration on RISC-V hardware.

Figure3: Transformation of linalg.matmul op in IREE

In the case of plain MLIR
linalg.matmul op, memory accesses
are non-contiguous, which leads to a
low cache hit rate when processing
large matrices.
To reduce the number of accesses to
non-contiguous memory locations, we
need to reorder data. IREE uses
MLIR tensor.pack ops for this.
After packing, elements within each
tile are stored contiguously in memory,
and the tiles themselves are laid out
contiguously with respect to one
another.
MLIR linalg.mmt4d op operates on
these packed matrices. This results in
efficient cache utilization, and
performance acceleration.
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