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Abstract

Improvements to generated code quality when targeting the RISC-V wvector extension have been a major focus of
recent development efforts within the RISC-V LLVM backend. This contribution summarises recent advances,
outlines planned next steps, and presents benchmark results. The combination of these enhancements gives a
geometric mean 8.7% performance improvement in Clang 20 over Clang 17 as measured on the SpacemiT X60.

Overview

LLVM has had stable support for the RISC-V vector
extension for the past several releases, with both forms
of autovectorization — the loop vectorizer and the SLP
(superword-level-parallelism) vectorizer — enabled by
default, as well as a rich set of C intrinsics for the
RVV programming model. A key focus since then
has been on improving generated code performance.
The following sections explain the changes made in
the middle-end and backend that have delivered these
gains.

SLP improvements

The SLP vectorizer was originally designed for tradi-
tional SIMD architectures like NEON and SSE, and
previously only supported power-of-two vectorization
factors that fit exactly into a register.

On RVV, v1 enables vectors of arbitrary sizes, and in
LLVM 20 SLP can take advantage of this to vectorize
more straight-line sequences that aren’t powers-of-two,
e.g. an RGB pixel:

struct rgb { float r,g,b; };
void brighten(struct rgb *x, float f) {
x->r *= f;

x->g *= f;
x->b *= f;
}
brighten:

vsetivli zero, 3, e32, ml, ta, ma
vle32.v v8, (a0)

vifmul.vf v8, v8, fal

vse32.v v8, (a0)

ret

Loop vectorizer improvements

The RISC-V backend gained better support for
bfloat16 and FP16 types, specifically in the presence
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of zvfbfmin and zvfhmin where the they need to be
widened to FP32 first. This in turn allows the loop
vectorizer to vectorize more bfloat16 and FP16 loops:

void f(float *dst, __bfl16 *a, __bf16 *b) {
for (int i = 0; 1 < 1024; i++)
dst[i] += ((float)ali] * (float)blil);

vsetvli t4, zero, el6, ml, ta, ma
.LBBO_4:

vlirel6.v  v8, (t3)

vlirel6.v  v9, (t2)

vl2re32.v  v10, (t1)

viwmaccbfl16.vv v10, v8, v9

vs2r.v v10, (t1)

add t3, t3, a4

add t2, t2, a4

sub t0, t0, a6

add t1, t1, a7

bnez t0, .LBBO_4

Extra care needed to be taken in the cost model
since any widened bfloat16/FP16 will take up twice
the LMUL, impacting both throughput and register
pressure.

The loop vectorizer also learnt how to emit VLA
(vector-length-agnostic) segmented loads and stores
for factors of 4 and 8. Previously it could only handle
factors of 2 because there wasn’t a way to represent
arbitrary permutations for VLA vectors, but it’s now
able to combine multiple interleave intrinsics to repre-
sent higher factors.

Inlining of memcmp

LLVM had previously supported inlining calls to libc’s
memcpy/memset into vector loads and stores, but it
also recently gained the ability to inline memcmp into
vector instructions in cases where this is expected to
be cheaper than calling the libc function:



int equal(char *a, char *b) {
return memcmp(a, b, 16) == 0;

}

equal:
vsetivli zero, 16, €8, ml, ta, ma
vle8.v v8, (a0l)
vle8.v v9, (al)
vmsne.vv v8, v8, v9
vcpop.m a0, v8
seqz a0, a0
ret

vsetvli optimization

The pass that handles inserting vsetvli instructions
previously took place before register allocation. This
had the unintended side effect of preventing the sched-
uler from moving vector instructions across changes
to v1 or vtype.

To remedy this, register allocation was split into two
separate passes for scalars and vectors. The vsetvli
insertion pass now runs after vector register allocation,
but before scalar register allocation, as a vsetvli may
need to use a scalar register to set v1=VLMAX.

As a result, scheduling for vector instructions is now
improved, and LLVM can rematerialize vector instruc-
tions that have been spilled. An interesting artefact
of the separate scalar and vector register allocations
is that it’s possible to rematerialize non-constant in-
structions like vmv.v.x.

Additionally, a new pass was added that reduces
the v1 of instructions to only what is demanded. This
works in conjuction with the previous insertion pass to
reduce the number of vsetvlis emitted, and improves
performance on microarchitectures which are sensitive
to v1 (e.g. SiFive x280)

Stripmined loops via vl tail folding

Initial support for generating stripmined loops via v1
masking has been landed behind a flag. This required
teaching the loop vectorizer to emit Vector Predication
intrinsics (LLVM'’s target agnostic way of representing
mask and vector length semantics). Work is ongoing
to enable it by default.

.LBBO_2:

sub ab, al, a2

sh2add a3, a2, a0

vsetvli a5, a5, e32, m2, ta, ma
vle32.v v8, (a3)

sub a4, a4, a6

vadd.vi v8, v8, 1

vse32.v v8, (a3)

add a2, a2, ab

bnez a4, .LBBO_2
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Figure 1: SPEC CPU 2017 rate benchmarks on the train
dataset on the BPI-F3 (SpacemiT X60), compiled with
-march=rva22u64_v -03 -flto

Part of the difficulty in performing tail folding is
due to the behaviour of vsetvli on the second to
last iteration, where v1 may be set to ceil (AVL / 2).
This invalidated assumptions in the loop vectorizer
that only the last iteration needed masking.

Performance results

SPEC CPU 2017 compiled with Clang 20.0.0 was
measured to have a geometric mean 8.7% improvement
over Clang 17.0.3 on the SpacemiT X60, shown in
Figure 1.

Work on performance was aided by significant im-
provements to public CI, with expanded buildbot con-
figurations and LLVM test-suite testing. Nightly per-
formance testing on the SpacemiT X60 via LNT now
also allows regressions to be caught within a day of
landing.

Upcoming and future work

While significant progress has been made, there is
still a wide range of potential further optimisations,
improvements, microarchitecture-specific tuning, and
further features to be implemented especially as more
RVYV capable hardware becomes commercially avail-
able. Areas of planned work include:

e Fixing gaps in the cost model where compiling
with RVV versus results in degraded performance
compared to without RVV

e Proof-of-concept support for proposed extensions
such as zvzip and zvabd

e Support for RVV in llvm-exegesis, LLVM’s tool
for automatically benchmarking instructions on
hardware to drive scheduling models

e Support for VLEN=32, which isn’t possible today
due to the mapping of LLVM IR vector types to
SEW and LMUL
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