
Improvements to RISC-V Vector
code generation in LLVM

Alex Bradbury and Luke Lau, Igalia
RISC-V Summit Europe 2025

Overview

LLVM has had stable support for the RISC-V vector extension for the
past several releases, with both forms of autovectorization — the loop
vectorizer and the SLP (superword-level-parallelism) vectorizer —
enabled by default, as well as a rich set of C intrinsics for the RVV
programming model. A key focus since then has been on improving
generated code performance.

SLP improvements

The SLP vectorizer previously only supported power-of-two vectorization
factors that fit exactly into a register.
On RVV, vl enables vectors of arbitrary sizes, and in LLVM 20 SLP can
take advantage of this to vectorize more straight-line sequences that
aren’t powers-of-two, e.g. an RGB pixel:
struct rgb { float r,g,b; };
void brighten(struct rgb *x, float f) {
x->r *= f;
x->g *= f;
x->b *= f;

}
brighten:

vsetivli zero, 3, e32, m1, ta, ma
vle32.v v8, (a0)
vfmul.vf v8, v8, fa0
vse32.v v8, (a0)
ret

Loop vectorizer improvements

The RISC-V backend gained better support for bfloat16 and FP16 types,
specifically in the presence of zvfbfmin and zvfhmin where the they need
to be widened to FP32 first. This in turn allows the loop vectorizer to
vectorize more bfloat16 and FP16 loops:
void f(float *dst, __bf16 *a, __bf16 *b) {
for (int i = 0; i < 1024; i++)
dst[i] += ((float)a[i] * (float)b[i]);

}
vsetvli t4, zero, e16, m1, ta, ma

.LBB0_4:
vl1re16.v v8, (t3)
vl1re16.v v9, (t2)
vl2re32.v v10, (t1)
vfwmaccbf16.vv v10, v8, v9
vs2r.v v10, (t1)
add t3, t3, a4
add t2, t2, a4
sub t0, t0, a6
add t1, t1, a7
bnez t0, .LBB0_4

Extra care needed to be taken in the cost model since any widened
bfloat16/FP16 will take up twice the LMUL, impacting both throughput
and register pressure.

vsetvli optimization

vsetvli instructions act as scheduling boundaries when vtype
changes.
vsetvli insertion pass was moved after vector register allocation
and pre-regalloc scheduler
LLVM can schedule vector instructions more aggressively
Regsiter allocation was split into separate scalar and vector passes,
which allows non-constant instructions like vmv.v.x to be
rematerialized

Additionally, a new pass was added that reduces the vl of instructions to
only what is demanded. This works in conjuction with the previous
insertion pass to reduce the number of vsetvlis emitted, and improves
performance on microarchitectures which are sensitive to vl (e.g. SiFive
x280)

Inlining of memcmp

LLVM previously supported inlining calls to libc’s memcpy/memset into
vector loads and stores. In LLVM 20 it gained the ability to inline memcmp
too. The below shows memcmp(a, b, 16) == 0 being inlined:

vsetivli zero, 16, e8, m1, ta, ma
vle8.v v8, (a0)
vle8.v v9, (a1)
vmsne.vv v8, v8, v9
vcpop.m a0, v8
seqz a0, a0

Stripmined loops via vl tail folding

Initial support for generating stripmined loops via vl masking has been
landed behind a flag. This required teaching the loop vectorizer to emit
Vector Predication intrinsics (LLVM’s target agnostic way of representing
mask and vector length semantics). Work is ongoing to enable it by
default.
.LBB0_2:

sub a5, a1, a2
sh2add a3, a2, a0
vsetvli a5, a5, e32, m2, ta, ma
vle32.v v8, (a3)
sub a4, a4, a6
vadd.vi v8, v8, 1
vse32.v v8, (a3)
add a2, a2, a5
bnez a4, .LBB0_2

Part of the difficulty in performing tail folding is due to the behaviour of
vsetvli on the second to last iteration, where vl may be set to
ceil(AVL / 2). This invalidated assumptions in the loop vectorizer
that only the last iteration needed masking.

Performance results

SPEC CPU 2017 compiled with Clang 20.0.0 was measured to have a
geometric mean 8.7% improvement over Clang 17.0.3 on the SpacemiT
X60, shown in Figure 1.

52
6.

bl
en

de
r_

r

51
9.

lb
m

_r

51
1.

po
vr

ay
_r

52
0.

om
ne

tp
p_

r

55
7.

xz
_r

50
2.

gc
c_

r

51
0.

pa
re

st
_r

50
5.

m
cf

_r

52
5.

x2
64

_r

54
4.

na
b_

r

50
8.

na
m

d_
r

53
8.

im
ag

ick
_r

50
0.

pe
rlb

en
ch

_r

52
3.

xa
la

nc
bm

k_
r

54
1.

le
el

a_
r

53
1.

de
ep

sje
ng

_r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ex
ec

ut
io

n 
tim

e 
(lo

we
r i

s b
et

te
r)

0.6% 0.6% -0.6% -2.2% -5.6% -6.2% -6.7% -7.0% -7.2% -10.1% -10.4% -10.8% -13.2% -13.3% -16.5% -17.6%

SPEC CPU 2017 rva22u64_v -O3 -flto on Banana Pi F3
clang 17.0.6
clang 20.0.0

Figure: SPEC CPU 2017 rate benchmarks on the train dataset on the BPI-F3
(SpacemiT X60), compiled with -march=rva22u64 v -O3 -flto

Work on performance was aided by significant improvements to public
CI, with expanded buildbot configurations and LLVM test-suite testing.
Nightly performance testing on the SpacemiT X60 via LNT now also
allows regressions to be caught within a day of landing.

Upcoming and future work

Fixing gaps in the cost model where compiling with RVV versus
results in degraded performance compared to without RVV
Proof-of-concept support for proposed extensions such as zvzip
and zvabd
Support for RVV in llvm-exegesis, LLVM’s tool for automatically
benchmarking instructions on hardware to drive scheduling models
Support for VLEN=32, which isn’t possible today due to the mapping
of LLVM IR vector types to SEW and LMUL


