Comparative Analysis of GCC Codegen
for AArch64 and RISC-V

Paul-Antoine Arras

BayLibre, France

Abstract

This contribution explores possible improvements in GCC code generation for RISC-V. We collected dynamic
instruction counts from selected SPEC CPU 2017 benchmarks and compared the results with AArch64. Findings
reveal that prominent compiler weaknesses include missing instruction patterns, extra move instructions, and

suboptimal register allocation. Additionally, addressing ISA limitations, such as the lack of a scaled addressing

mode, and vectorising library functions, like memset and mathematical operations, are crucial for mazximising

RISC-V efficiency.

Experimental Setup

The study targeted ARM AArch64 SVE2 and RISC-V
RV64GCV, and utilised the following tools:

e SPEC CPU 2017 v1.1.9;

e GNU toolchain (GCC) built from master on 8
August 2024;

e GNU C library (glibc) similarly built;

e User-mode QEMU v9.1.0-rcl.

The benchmarks were compiled for both architectures,
executed with the reference data set, and analysed us-
ing QEMU with a custom plugin® designed to identify
hotspots and measure dynamic instruction counts?.
The analysis focused on the most frequently executed
basic blocks, referred to as top blocks. The selected
benchmarks exhibited the largest differences in dy-
namic instruction counts (DIC) between AArch64 and
RISC-V: 502.gcc_r (41%), 510.parest _r (54%), 549.fo-
tonik3d _r (39%), and 554.roms_r (36%).

Weaknesses and Deficiencies
Identified

Compiler

Default LMUL-MAX In the RISC-V Vector
(RVV) extension, the length multiplier (LMUL) deter-
mines how many registers can be operated on at once.
LMUL can be set dynamically as long as it does not
exceed LMUL MAX, which defaults to 1 in GCC.
In some cases, the default LMUL MAX restricts
the parallelism level and thus increases the DIC. This
is particularly stringent on the 549.fotonik3d r bench-
mark: by default, RISC-V’s DIC is 38.7% higher

1 We thank Rivos for providing the plugin.

2 Dynamic instruction count was chosen as a vendor-neutral
metric, and the significant performance gap between the ar-
chitectures reduces the risk of overfitting.

RISC-V Summit Europe, Paris, 12-15th May 2025

than AArch64’s; but when LMUL MAX is set to
dynamic, RISC-V’s DIC becomes almost 4% lower
than AArch64’s.

However, increasing LMUL MAX might not be
beneficial on real hardware, depending on the actual
microarchitecture?.

SIMD Clones for Mathematical Functions At
the time of analysis, GCC does not produce any SIMD
clones for RISC-V. On AArch64, the combination of
vectorised implementations in glibc (see below) and
SIMD cloning can be used. As a result, on the 554.roms
benchmark, all calls to the exp mathematical func-
tion account for 28% fewer dynamic instructions on

AArch64.

Vector-Scalar Instructions Some RVV instruc-
tions have a variant where one input operand is a scalar
register. For example, the floating-point multiply-add
instruction has the following definitions:

vimadd.vv
vimadd.vf

vd, vsl, vs2, vm
vd, rsl, vs2, vm

However, GCC tends to emit a vector-vector in-
struction plus a broadcast when a single vector-scalar
instruction would have sufficed. For instance, we have:

vimv.v.f v6, fad

vimadd.vv vd, v6, v21

Which could be simply:

vfmadd.vf v4, fad, v21

Extra Move Instructions Given a sequence of
multiply-add operations, each reusing the previous re-
sult, a common idiom is to keep overwriting the same
destination register to limit pressure and cut extra
move instructions. We observed instances where GCC
followed this idiom for AArch64 while, on RISC-V, it
used many registers and added extra instructions:

3 https://gcc.gnu.org/PR114686



vmvir.v v, vl
vimadd.vv v4d, v3, v31l
vmvir.v v, vl
vimadd.vv v5, v4, v30
vmvir.v v10, vi

vimadd.vv v10, v5, v29

ISA

Missing Scaled Addressing Mode When iterating
over an array, it is beneficial to be able to read at a
specific index in one instruction given (1) the base
address, (2) the index and (3) the element size. The
effective address can then be computed as: (1) + (2)
<« (3). AArch64 provides such an addressing mode,

e.g.:

ldiw {z30.s}, p7/z, [x3, x0, 1sl #2]

On the other hand, RISC-V requires a separate
instruction to perform the shift:

addi t1, t1, 16
vle32.v v4, (t1)

This is the most prevalent issue in floating-point
benchmarks.

Scalar Register Loading AArch64 can load a pair
of scalar registers from contiguous memory with one
1dp instruction:

1dp d24, 425, [x0, #16]

RISC-V has to use two consecutive instructions:

f1d fal, 16(ab)
fld fab5, 24(ab)

Bitfield Extract and Insert RISC-V’s bit-manip-
ulation standard extension (Zbs) only provides bset
(single-bit set) and bext (single-bit extract). Extract-
ing a bitfield requires two instructions: s11i + srli
(or srai). Inserting into a bitfield requires at least
two instructions: andi + slli.

AArch64 has a richer set of bit manipulation in-
structions. For instance, general unsigned bitfield
extraction can be achieved with the ubfx instruction,
while ubfiz can be used for unsigned bitfield insert in
zero.

Immediate Addressing Mode Several vector
floating-point instructions lack an immediate address-
ing mode. For instance, vfmax compares the content of
two vector registers and returns the maximum for each
element. However, there is no way to directly compare
a register with a constant immediate; an additional
move instruction is required. The following example
illustrates how to replace negative values with zeroes
in a vector:

vmv.v.i v3, O

vimax.vv v2, v2, v3

In contrast, AArch64 can achieve the same result
with a single fmaxnm instruction:

fmaxnm z30.d, p7/m, z30.d, #0.0

Displacement Addressing Mode The encodings
of vector load and store instructions do not have an
immediate field. In other words, the only supported
addressing mode is register indirect, rather than the
more eclectic displacement. For example, to load a
whole vector register from contiguous memory with a
base address computed by adding an offset to the value
of a scalar register, RISC-V requires two instructions:

addi
vllre64.v

s1, sO, -496
v6, 0(s1)

While AArch64 can do it in a single instruction:

ldr z27, [x29, #77, mul vl]

Library

Optimised memset glibc has hand-optimised imple-
mentations of heavily used functions for different sub-
sets of the AArch64 ISA. However, at the time of
analysis, glibc does not provide such optimised func-
tion implementations for RISC-V. For the 502.gcc
benchmark, RISC-V spends at least 21% of the run in
glibc’s generic scalar memset implementation; A Arch64
spends less than 1% of the run in its hand-optimised
version of memset.

Optimised Mathematical Functions At the time
of writing, glibc does not define any vectorised mathe-
matical functions (libvecm) for RISC-V. The analysis
of the 554.roms benchmark shows that AArch64 can
leverage its Advanced SIMD implementation of the
exp function 80% of the time. As a result, when deal-
ing with double-precision floating-point numbers, a
single call to this optimised variant can replace four
similar calls to the original scalar version.

Future Work

We are currently implementing fixes for some of the
weaknesses identified in the GCC RISC-V backend. In
particular, we submitted a patch addressing the vector-
scalar issue described above. Other areas of interest
include loop unrolling and constant load hoisting.

Acknowledgements

This work has been carried out as a collaboration
between BayLibre and Rivos Inc., and funded by the
RISE Project.

RISC-V Summit Europe, Paris, 12-15th May 2025



	Experimental Setup
	Weaknesses and Deficiencies Identified
	Compiler
	Default LMUL-MAX
	SIMD Clones for Mathematical Functions
	Vector-Scalar Instructions
	Extra Move Instructions

	ISA
	Missing Scaled Addressing Mode
	Scalar Register Loading
	Bitfield Extract and Insert
	Immediate Addressing Mode
	Displacement Addressing Mode

	Library
	Optimised memset
	Optimised Mathematical Functions


	Future Work
	Acknowledgements

