

RISC-V SUMMIT 2025

RISC-V open designs and contributions to hardware security research and development activities

Agence Nationale de la Sécurité des Systèmes d'Information (ANSSI)

11 MARS 2025

Technical challenges

Secure Hardware Foundation

Implement hardware-based security functions

- Performances optimization, SWaP and security balancing (mobility, sustainability)
- Early stages, protection of the cores, techno specific properties

Secure by design

Improve the level of assurance

- Improvement of tools for security proof verification
- Control the design and the configuration of the security functions

Tightly coupling of hardware and software security

Securing the software

- Mechanisms securing the software implementation
- Support the increase in the size and complexity of systems

Security features

Design specific

Core

Secure boot Memory protection Control flow integrity Pipeline protection PMP/MMU Crypto acc.

Buses & interconnect

Firewall Access control Secure partitioning Peripherals

IOPMP/MMU Worldguard/TEE Crypto coproc.

Techno specific

TRNG / Performances / Hardware attacks

IoT **Smartcards** Smartphones HSM Secure Secure Elements communications SWaP-C Secure Supply Chain System computing Wallets on chips Side channel attacks Fault injections Microarchitectural attacks

Some current activities or topics of interest

... but there are many other project to which ANSSI does not contribute directly

□ Survey and technical analysis

- Core security functions: CVA6, CV32E40S, Ibex (Secure and CherIoT), Caliptra
- Secure SoC design : OpenTitan, Caliptra
- > Tools : μArchiFI

□ Collaborations

- Hardware accelerator with the IP ECC
- Hardware resources sharing for crypto-agility in PQC

<u>cea</u>

Contributions to funded projects

- ARSENE Project funded under PEPR Cyber 2022 / 2027
- FORWARD project funded under PTCC 2025 / 2029

Hardware acceleration for Elliptic Curves Crypto (ECC)

... for side channel & physical-attacks countermeasures analysis and testing

- ☐ Use case models: hardware root of trust (e.g secure enclave) or authentication
- IP Features:
- > Embedded TRNG
- > Two static exclusive modes :
 - ✓ unsecure
 - ☐ In this mode, every synthesized countermeasure (CM) can be engaged or disengaged
 - √ secure
 - ☐ In this mode, no synthesized countermeasure can be disengaged
- > SCA countermeasures : «defense-in-depth» rationale:
 - ✓ Built-in CMs: Constant time, Initial coordinates randomization, Anti-address bit DPA (including anti-collisions), Check that input and output points belong to the curve
 - ✓ Optional CMs : Blinding, Sensitive points address shuffling, Large Numbers memory address shuffling, Periodic coordinates randomization
- ☐ IP Design: 100% technology agnostic (except for TRNG) both for FPGA & ASIC

Hardware acceleration for Elliptic Curves Crypto (ECC)

From FPGA designs to full ASIC implementation

☐ Can be used with libecc* project running on ARM / RISC-V processor

1st Step: SoC / FPGA 2nd Step:

3rd Step: Full ASIC ongoing

^{*} Library for elliptic curves cryptography

Hardware sharing for ML-KEM and HQC

Switching between different PQC cryptosystems... based on a same hardware

- NIST U
- Our targeted agility + Hardware : ML-KEM (lattice-based) + HQC (code-based)
- Identification and share common operations in a single implementation
- ☐ Application-specific accelerators integration strategy

(2) Connected via the system bus

- > Tightly-coupling (1): Few flexibility but low latency
- ➤ Loosely-coupling (2): More flexible but higher latency

ARSENE project

ANSSI is part of the consortium

□ Part of the Priority Research Programs and Equipment – France 2030

- Program overseen by the CEA, CNRS, and Inria, divided in ten challenges (among which ARSENE)
- ➤ Partners: CEA, CNRS, Inria, IMT, Grenoble INP, ENSTA Bretagne, ANSSI, and several universities (Grenoble Alpes, Saint-Etienne, Montpellier, Bretagne Sud, Bretagne Occidentale, Rennes 1)

□ Challenge: hardware and software security of embedded systems

- Securing the reference implementations of two ranges of RISC-V processors:
 - ✓ 32-bit RISC-V, for constrained IoT applications, intrinsically secure against physical attacks
 - ✓ 64-bit RISC-V for richer applications, particularly secure against software attacks exploiting hardware vulnerabilities
- Secure integration of these processors within systems-on-chip (SoCs)
 - ✓ research and development of critical building blocks (random number generators, secure memories, agile cryptographic accelerators for so-called "pre- and post-quantum" algorithms, etc.)
- Study of software tools for secure codes, secure kernels, dynamic supervision techniques
- Demonstration and validation on FPGA and ASIC type components

ARSENE project: **ANSSI's** perspectives

□ Contributions

- Security analysis of 32-bit RISC-V based secure elements (SCA and FI)
- Securing 64-bit RISC-V based applicative SoC (micro-architectural attacks, lifecycle, boot management)
- Work on the RISC-V ISA to improve performance and security of cryptographic algorithms

☐ Interests

- Availability of open-hardware secure elements, protected against high level attackers,...
- > A step towards applicative processors with security features, suitable for mobile secure applications
- Contribution to the test chip produced during the project and practical analysis of it

FORWARD project

ANSSI is part of the consortium

□ Part of the Cyber Campus Transfert Program – France 2030

- Relies on the dynamics of the Cyber Campus and its network to promote joint projects between academic, industrial and government players
- > Partners: CEA, Inria, Sorbonne university, Mines Saint-Etienne, ANSSI, Thales DIS, Safran
- □ Challenge: formal verification and physical attacks resilience of HW countermeasures
 - Formal analysis applied to countermeasures verification
 - Designing countermeasures and characterizing their robustness
 - √ Sophisticated attacker models
 - ✓ Multiple faults
 - Quantifying the gap between experimental characterizations and formal verification
 - ✓ Experimentation platforms : Fault injection platforms (laser or EM)
 - ✓ Formal verification platforms : e.g. µArchiFI, SAMVA (software centric)

FORWARD project: ANSSI's perspectives

□ Interests

- Interest in applying formal verification methods to the hardware domain
 - ✓ Better threat coverage
- ➤ Dissemination of open-source tools to industry
- Having a proven methodology to validate the security benefits of hardware countermeasures
 - ✓ Being able to use characterization results during the design step
 - ✓ Being able to compare several countermeasure proposals available in the state of the art
- Need for formal methods that are as close as possible to experimental analysis results
 - ✓ Interesting to measure the gap between the two approaches

References

- □ IPECC project : https://github.com/ANSSI-FR/IPECC
- ➤ Libecc projet : https://github.com/ANSSI-FR/libecc
- PHOENIX paper (eprint): https://eprint.iacr.org/2025/601.pdf
- □ ARSENE project (for French readers...) :
- Project overview : https://www.pepr-cybersecurite.fr/projet/arsene/
- Some details : https://www.pepr-cyber-arsene.fr/details/
- ☐ FORWARD project (for French readers too...) :
- Project summary : https://ptcc.fr/projets/forward/
- □ µArchiFl project : https://github.com/CEA-LIST/uArchiFl
- □ SAMVA paper (JAIF 2023) : https://jaif.io/2023/media/JAIF2023-slides-Gicquel.pdf

Thank you for your attention Any questions?

