OpenTitan Integrated

A RISC-V Open-Source Silicon Root-of-Trust for large SoCs

Robert Schilling rschilling@rivosinc.com

What is OpenTitan Integrated?

From a discrete chip...

- Open Source Silicon Root of Trust (RoT)
- **Fully Open Design:** RTL, DV, firmware, and documentation under a **permissive** license:

https://opentitan.org

- Trustworthy & Verifiable Security: Enhancing hardware security through an open and auditable foundation
- Focus on Quality & Flexibility: Emphasizes rigorous verification and adaptable design for diverse integrations

What is OpenTitan Integrated?

From a discrete chip...

... to a an integrated RoT

Controlled Communication Interface

RoT and SoC communication need proper isolation

Principle of **Least Privilege**

- SoC should not have unfettered access into RoT
- RoT should not have unfettered access into SoC

SoC may have **different** memory space partitions

- OpenTitan controlled
- SoC controlled
- ..

SoC to OpenTitan - Mailbox

SoC has **no direct access** into OpenTitan space

All transactions managed through a mailbox

- External host deposits transactions, OpenTitan software reads
- OpenTitan software deposits transactions, external host reads

Many applications

- Debug authorization request
- Security services request

OpenTitan to SoC - DMA

DMA has **limited access** to OpenTitan private memory

Only operates on a isolated memory range

Support for inline hashing operation

Compute SHA-2 digest while transferring data

Many applications

- Code loading and verification
- Data transfer to low-speed IOs

Access Control Range Check

New IP

- Configurable number of ranges
- TOR matching logic with static prioritization
- Permission checks for R/W/X and RACL

- Used at the boundary of RoT
- Also comes with block-level DV

Debug and DFT Governance

OpenTitan maintains life cycle scheme

Local debug and test gated directly by the life cycle

OpenTitan authorizes SoC debug and test

 SoC can either rely solely on OpenTitan authorization or combine with SoC scheme

Overall scheme

- SoC requests debug through mailbox
- OpenTitan software initiates a challenge / response protocol
- If SoC provides valid response, debug and test is unlocked via a distributed debug policy bus

Restrict Register Access in a Shared Environment

Restrict Register Access in a Shared Environment

Restrict Register Access in a Shared Environment

RACL - Register Access Control List

Provides differentiated security on access to registers

- Each processing element is assigned a role
- Each register is assigned with a policy defining what role can read or write

RACL Integration in OpenTitan

Machine readable specification

for RTL, DV, and documentation

- Defines roles and policies
- o Provides register mapping
- Automated code generation
- Central new IP: racl_ctrl
 - o Defines the policies for the subsystem
 - Collects error information
 - Error log arbitration
- Native RACL support in IPs

SoC Generator for other Designs

OpenTitan designs are defined in HJSON configuration files

- From that **single source of truth**, a SoC generator creates:
 - The top-level RTL level
 - DV, software, documentation

Support for arbitrary designs

- Minimal design with just a CPU, Memory, XBARs, UART
 - Use as a **companion** core in your SoC
- Discrete Root of Trust SoC
- etc

A common software stack and build system targets all designs

```
name: "dma",
type: "dma",
clock_srcs: {clk_i: "main"}
clock group: "infra",
reset connections: {rst ni: "lc"},
base_addr: {hart: "0x22010000"},
name: "mbx0",
type: "mbx",
clock_srcs: {clk_i: "main"}
clock_group: "infra",
reset_connections: {rst_ni: "lc"},
base addrs: {
  core: {hart: "0x22000000"},
  soc: {soc_mbx: "0x01465000"},
racl_mappings: {
  soc: 'racl/all_rd_wr_mapping.hjson'
```


OpenTitan is ready to be placed in a large SoC

- It's got the right communication interfaces
 - Secure mailbox and DMA interfaces
- Debug governance via a flexible debug policy bus
- RACL provides a fine-granular and customizable access protection for registers
- Generic SoC generator supports custom designs
 - Support for external alerts, interrupts
- ... and much more: **Post-Quantum Computing, DICE,** ...
- Available at: https://opentitan.org

