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Abstract

Faults in a branch predictor’s programming will not cause ISA tests to fail or the processor to deadlock, instead
they are likely to cause subtle effects, such as underperformance. Exhaustive testing is near infeasible and low
impact deviations from the desired functionality are likely to go undetected. Extremely rare cases could cause a
context-sensitive branch predictor to strongly underperform. This paper presents a framework for testing branch
predictors written in optimized HDL for RISC-V processors. The SGV framework can functionally verify a HDL
branch predictor against a high level gold standard branch predictor efficiently using billions of trace instructions.
A deviation from the outputs of the two models allow for an instant halt and internal state can be logged to
trace the deviation. Verifying on a diverse set of traces can ensure with high confidence that the HDL model is
functionally equivalent to the gold standard model. The framework is used to verify a TAGE based based branch
predictor in Bluespec SystemVerilog.

Introduction

Branch predictors are ubiquitous and a necessary com-
ponent in high-performance processors to enable high
levels of IPC [1] (instructions per cycle). Branch pre-
dictors are an evolving field, and modern branch pre-
dictors can be highly complex.

Generally, state of the art branch predictors
have been published in the form of a high level
software programming language implementation.
These languages provide the benefits of being able
to describe behaviour at a general level without
worrying about low-level implementation details, as
well as being easily parameterisable. The translation
of these to hardware is non-trivial [2]. Despite this,
relatively little work has been done on verifying
the behaviour of branch predictors implemented
in hardware. Often, good performance across a
series of benchmarks is considered enough to verify
the performance of a branch predictor. However,
small errors in implementation can lead to subpar
performance, and even small decreases in accuracy
can lead to measurable differences in IPC [1].

This paper proposes a more principled approach
to developing branch predictors, which we term the
Simulation-based Gold-standard Verification frame-
work (SGV) its main purpose is to test for exact func-
tional equivalence between a high and low level model.
It makes two extensions. 1) It allows two branch pre-
dictors to run in lockstep to compare their output, and
2) It introduces an interface for connecting Bluespec-
based branch predictors to the high-level simulator.
This enables easy comparison between branch predic-
tors implemented in an HDL and in software. By

efficiently bridging the HDL model to the high level
simulator, billions of instructions can be used to test
at a high volume. The power in this method allows for
deviations to be rapidly spotted. A case study is given
where SGV is used to debug an implementation of
TAGE [3] against a pre-written gold standard model
for the RISC-V Toooba [4] processor. We propose that
this framework will be greatly beneficial for testing
branch predictors in RISC-V processors.

Importance of Correctness

Incorrect branch predictors will not cause an erroneous
implementation of the ISA, instead less accurate pre-
dictions will be provided and therefore a lower IPC.
As the processor will continue to function if a branch
prediction is incorrectly implemented, rarely-seen de-
viations between the predictor’s behaviour and the
intended model may seem unimportant, however, the
context of the predictor could be incorrectly altered
such that many future predictions will be affected.
Unfortunately, branch predictors can be incredibly
context-sensitive, meaning generally low-impact unde-
tected issues in the programming could potentially be
disastrous in some contexts. As an example, one of
the most widespread branch predictor designs, TAGE,
is highly sensitive to small deviations in the branch
history. Even if faults don’t propagate, as discussed in
[1], a small increase in mispredictions can noticeably
decrease IPC.

The SGV framework

We present a method for testing predictors written in
BSV with a focus on the pure prediction functionality,
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rather than cycle accuracy. The SGV framework
intends to find divergence in the prediction function
by sequentially asserting outputs are the same under
billions of instructions, with functionality to log
and trace bugs triggering the assertion. While tree
structures, folded histories and pipelining may be
used in the actual hardware implementation of the
predictor, the gold standard model does not require
this. A key insight is that a gold standard model is
not just simpler because it can be written in a higher
level language, but particularly it doesn’t need to be
optimised and can instead focus on a purely correct
implementation of the desired functionality.

The SGV framework bridges the gold standard
model and the HDL model using a simulator with
the functionality to read in traces, request predictions
from both models, and send subsequent updates. SGV
is implemented on top of Champsim[5], a trace-based
simulator, to verify the models against each-other on
each prediction. With SGV, Champsim simulates and
compares multiple branch predictors. It compares
their outputs and halts on a deviation.

Using the BSV’s BDPI library a Bluesim simulation
incorporating the branch predictor can be bridged to
the Champsim prediction interface using an OS FIFO,
allowing for predictions to be run on both models.
Because Champsim does not simulate wrong paths,
branch instructions could be buffered to greatly im-
prove efficiency making the performance penalty of
the SGV framework almost negligible.

Using the SGV framework in
development

The SGV framework is effective in the later stages of
development after some testing has already taken place
directly in the HDL. For our TAGE case study, we used
numerous testing traces. To use the SGV framework
it was necessary to implement a C++ based version
of TAGE that is more faithful to a hardware-based
implementation such as implementing an LFSR shift
register for random number generation.

Faults found using the SGV framework

Using SGV, we were able to quickly find divergence
in behaviour between the software and hardware
based predictor. A few thousand predictions into
the simulation the framework detected a fault which
incorrectly left shifted the PC passed into the training
data. Another divergence revealed that the hardware
implementation, when choosing the first table as the
provider, would incorrectly also mark the first table

as the alternative table.

A subtle bug was found 85,000 branch instructions
into the simulation. The root cause was the fact that
the BSV TAGE predictor was decrementing the useful
counter of all entries above and including the provider
entry, when it should only be the entries above the
provider entry. This issue caused a divergence in the
state around 20,000 instructions into the simulation
despite manifesting in a wrong output 85,000 instruc-
tions in. By searching for specific indices in the logs
we could trace back the allocations and uses of this
entry to find this cause. It is highly likely this small
discrepancy would’ve remained undetected.

Future work

As the framework is an extension of the Champsim
prediction interface, it’s currently limited to an unreal-
istic assumption that wrong path instructions are not
predicted on. The SGV model also does not model
other possible issues in a pipelined processor such as
out of order updates and makes the assumption of
immediate updates. The SGV framework could be
extended to include more realistic assumptions.

Conclusion

In this work, we have introduced SGV, a framework
for verifying hardware-based branch predictors against
gold-standard models implemented in software. We
demonstrate the effectiveness of SGV by verifying a
Bluespec System-Verilog implementation of the TAGE
branch predictor for Toooba, an open source RISC-V
processor, showing how it can be used to incrementally
identify and correct implementation bugs.
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