FastISS RISC-V VP-+4: A Simulation
Performance Evaluation of RVV Workloads

Manfred Schléagl and Daniel Grofe

Institute for Complex Systems, Johannes Kepler University Linz, Austria

manfred.schlaegl@jku.at, daniel.grosse@jku.at

Abstract

In this paper, we consider the SystemC-based open-source RISC-V VP++ with support for the RISC-V "V"
Vector Extension (RVV), whose interpreter-based Instruction Set Simulator (ISS) has recently been significantly
optimized, as presented in [1]. While the original paper examined simulation performance gains using classical,

non-vectorized workloads, this paper focuses on the gains on a workload vectorized using RV'V.

Introduction

The open and royalty-free Instruction Set Architecture
(ISA) RISC-V |2] has gained significant traction in
recent years. Particularly noteworthy is the high
degree of modularity of RISC-V, with a large num-
ber of standardized extensions that can be inte-
grated as a tailor-made system to perfectly meet
application-specific requirements. Omne outstand-
ing extension is the RISC-V "V" Vector Extension
(RVV), which adds 600+ new instructions and
32 vector registers, and with this brings exten-
sive Single Instruction, Multiple Data (SIMD) ca-
pabilities to the RISC-V architecture. Unlike
Single Instruction, Single Data (SISD), SIMD allows
operations to be performed not only on individ-
ual data elements, but on whole wvectors of ele-
ments simultaneously. With this, SIMD exploits
the Data-Level Parallelism (DLP) often found in al-
gorithms for modern multimedia and machine learn-
ing applications, significantly improving their data
throughput and overall performance [3].

The RISC-V VP++ considered in this paper is an
open source, SystemC TLM (IEEE 1666, [4]) based
Virtual Prototype (VP) with support for RVV [5, 6].
VPs are high-level, executable models of the entire
Hardware (HW) platforms which can run unmodified
production Software (SW) [7] and therefore allow early
design space exploration, parallelization of HW and
SW development, and system evaluation and valida-
tion [8]. Central elements of HW platforms are proces-
sors, which are modeled as interpreter-based RISC-V
RV32 and RV64 Instruction Set Simulators (ISSs) in
RISC-V VP++. Recently, extensive optimizations
were made to these ISSs to significantly increase simu-
lation performance [1]. In the remainder of this paper,
the optimized ISS will be referred to as FastISS. The
core optimizations of FustISS are the addition of (i)
the Dynamic Basic Block Cache (DBBCache), which
generates an alternative representation of the executed
code, the Dynamic Basic Block Graph (DBBG), to

RISC-V Summit Europe, Paris, 12-15th May 2025

efficiently cache data needed for instruction processing
(instruction fetch, decode and dispatch), and (ii) the
Load/Store Cache (LSCache), which enables direct
translation of in-simulation virtual addresses to host
system memory addresses, thereby almost completely
eliminating calls to the memory interface. Based on
the DBBCache, other optimization techniques have
also been applied, such as computed goto, threaded
code, fast and slow paths, ... The authors of [1] eval-
uated their FastISS RISC-V VP++ based on a set
of classic, non-vectorized benchmark workloads, and
achieved a simulation performance of up to 406.97
Million Instructions per Second (MIPS) and average
speedup factors of 8.98 over the original unoptimized
RISC-V VP++ and 1.65 over the Spike simulator.
In this paper, we focus on the performance gains
that can be achieved by FastISS RISC-V VP++
for workloads vectorized with RVV. We com-
pare the simulation performance based on achieved
Frames Per Second (FPS) by a classic game in a
non-vectorized and vectorized variant on the original

RISC-V VP++ and its new FastISS version.

Performance Evaluation

For our performance evaluation we consider
fbDOOM-RISCV provided by Semidynamics, which
is based on a Linux port of a classic game from the
1990s [9]. Semidynamics optimized f{bDOOM-RISCV
to speed up execution using RVV and adapted the
build system to produce an executable without the
optimizations (non-vectorized) and an executable
with the optimizations (vectorized). For our experi-
ments, we further adapt tbDOOM-RISCV: (i) We
disable the limitation to 35 FPS, and (ii) we add
instrumentation to measure the average FPS and
Million Ezecuted Instructions Per Frame — (MIPF).
Note that the FPS are calculated relative to the real
wall clock time of the simulation host and not the
simulation time, i.e. the measurements refer to the
simulation performance and not the performance

manfred.schlaegl@jku.at
daniel.grosse@jku.at

45

M non-vectorized Mvectorized 41.6
40 39.6
35
=}
5 30
[$]
@
9
g 25
£
3
r 20
& 15.7
£ 15 :
>
<
10
5 5.1
0 o
Original VP FastISS VP

Figure 1: Average FPS on achieved on RISC-V VP+-+

7

mnon-vectorized Mvectorized

5.8
5.1
5
1.2
0.8
0

Original VP FastISS VP

Figure 2: Average MIPF executed by RISC-V VP++

Average Million Instructions per Frame
N w »

[

of RVV itself. As build and execution environment
we chose a recent version of GUI-VP Kit which was
initially introduced in [10]. GUI-VP Kit comes with
support for RVV, and provides a full RISC-V devel-
opment and simulation environment for interactive
graphical Linux applications on RISC-V VP++. Its
recent version uses gcc-14.1 and linux-6.10.4. All
measurements are performed on a host system with
an AMD® Ryzen™ 7 PRO 6850U 8-core processor
running at 2.7 GHz, with 32 GiB RAM.

Figure 1 and Figure 2 present the results of the
fbDOOM-RISCV FPS and MIPF measurements, re-
spectively. The non-vectorized version is shown in
blue, the wvectorized in brown. The left-hand side
shows the results for the original RISC-V VP++ with
its unoptimized RV64 ISS (Original VP), the right-
hand side shows the results for RISC-V VP++ with
the optimized RV64 FastISS (FastISS VP).

As can be seen in Figure 1 there is a signifi-
cant increase in FPS and therefore simulation per-
formance from the Original VP to the FastISS VP.
For wectorized, which is the focus of this paper, we
observe an improvement by a factor of 2.65. However
for non-vectorized the improvement is significantly
higher with 7.78. Another observation is that there

is a significant difference in performance increase for
non-vectorized and wvectorized. For the FastISS VP
we see an increase of 1.05, while for the Original VP
the improvement is 3.09. Both observations can be
explained as follows. In vectorized implementations,
the work is shifted from many but simple instructions
(SISD) to fewer but more complex instructions (SIMD).
This can also be clearly seen in Figure 2: Instead of
5.8 and 5.1 MIPF for non-vectorized, we see only 1.2
and 0.8 MIPF for vectorized. In terms of an ISS, this
means that there is a shift in the overall computational
cost from instruction processing (instruction fetch, de-
code and dispatch) to instruction execution. Since the
optimizations in the FastISS VP focus almost exclu-
sively on reducing the overhead of ISS instruction pro-
cessing, non-vectorized implementations can generally
benefit more from the optimizations than vectorized
implementations.

This concludes our simulation performance evalua-
tion of RVV workloads on the FastISS RISC-V VP++
presented in [1]. The presented experiments show a
significant improvement in simulation performance by
a factor of 2.65 for a vectorized workload. However,
it is also shown that non-vectorized workloads can
generally benefit more from the FastISS optimizations
than vectorized workloads.

Acknowledgments

This work has partially been supported by the LIT Secure and
Correct Systems Lab funded by the State of Upper Austria.

References

[1] Manfred Schlidgl and Daniel Grofe. “Fast Interpreter-Based
Instruction Set Simulation for Virtual Prototypes”. In: DATE.
2025. URL: https://ics.jku.at/files/2025DATE_Fast_
Interpreter-based_ISS.pdf.

[2] Andrew Waterman and Krste Asanovié. The RISC-V In-
struction Set Manual; Volume I and II. SiFive Inc. and UC
Berkeley. 2019.

[3] Michael J. Flynn. “Very high-speed computing systems”. In:
IEEE 54.12 (1966), pp. 1901-1909.

[4] IEEE Standard for Standard SystemC Language Refer-
ence Manual. por: 10.1109/IEEESTD.2023.10246125. URL:
https://doi.org/10.1109/IEEESTD.2023.10246125.

[5] Manfred Schlagl, Moritz Stockinger, and Daniel Grofe. “A
RISC-V “V” VP: Unlocking Vector Processing for Evaluation
at the System Level”. In: DATE. 2024, pp. 1-6. por: 10.
23919/DATE58400.2024.10546838. URL: https://ics. jku.
at/files/2024DATE_RISCV-VP-plusplus_RVV.pdf.

[6] Manfred Schligl, Christoph Hazott, and Daniel Grofe. “RISC-
V VP-++: Next Generation Open-Source Virtual Prototype”.
In: Workshop on Open-Source Design Automation. 2024.
URL: https://ics.jku.at/files/20240SDA_RISCV-VP-
plusplus.pdf.

[7] Vladimir Herdt, Daniel Grofe, and Rolf Drechsler. En-
hanced Virtual Prototyping: Featuring RISC-V Case Stud-
ies. Springer, 2020. por: 10.1007/978-3-030-54828-5.

[8] Tom De Schutter. Better Software. Faster!: Best Practices
in Virtual Prototyping. Synopsys Press, Mar. 2014. 1SBN:
978-1617300134.

[9] fbDOOM-RISCV. https://github.com/semidynamics/
fbDOOM-RISCV.

[10] Manfred Schldgl and Daniel Grofe. “GUIL-VP Kit: A RISC-V
VP Meets Linux Graphics - Enabling Interactive Graphical
Application Development”. In: GLSVLSI. 2023, pp. 599-605.
por: 10.1145/3583781.3590253. URL: https://ics. jku.
at/files/2023GLSVLSI_GUI-VP_Kit .pdf.

RISC-V Summit Europe, Paris, 12-15th May 2025

https://ics.jku.at/files/2025DATE_Fast_Interpreter-based_ISS.pdf
https://ics.jku.at/files/2025DATE_Fast_Interpreter-based_ISS.pdf
https://doi.org/10.1109/IEEESTD.2023.10246125
https://doi.org/10.1109/IEEESTD.2023.10246125
https://doi.org/10.23919/DATE58400.2024.10546838
https://doi.org/10.23919/DATE58400.2024.10546838
https://ics.jku.at/files/2024DATE_RISCV-VP-plusplus_RVV.pdf
https://ics.jku.at/files/2024DATE_RISCV-VP-plusplus_RVV.pdf
https://ics.jku.at/files/2024OSDA_RISCV-VP-plusplus.pdf
https://ics.jku.at/files/2024OSDA_RISCV-VP-plusplus.pdf
https://doi.org/10.1007/978-3-030-54828-5
https://github.com/semidynamics/fbDOOM-RISCV
https://github.com/semidynamics/fbDOOM-RISCV
https://doi.org/10.1145/3583781.3590253
https://ics.jku.at/files/2023GLSVLSI_GUI-VP_Kit.pdf
https://ics.jku.at/files/2023GLSVLSI_GUI-VP_Kit.pdf

	Introduction
	Performance Evaluation

