FastiSS RISC-V VP++: A Simulation
Performance Evaluation of RVV Workloads

Manfred Schiagl

Daniel Grolie
Institute for Complex Systems, Johannes Kepler University Linz

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

< RISC-V
Ad SUMMIT

manfred.schlaegl@jku.at, daniel.grosse@jku.at 1215 May 2025

RISC-V Vector Extension (RVV):

SIMD: Single Instruction, Multiple Data

Vector Architecture: Generic instructions, vector
type/length dynamically configurable

Acceleration of signal processing, multimedia,
machine learning, ...

Virtual Prototypes (VPS): executable software models
of a hardware system that run on a host computer.

Modeled at the transaction level (TLM)
Binary compatible to real/physical hardware

Widely used by semiconductor global players
-> Industrial-proven

Modeled in SystemC
(C++ class library, IEEE1666-2023) mcm Vadiagram by Gaski; modified

Applications: Early design space exploration, parallelization of HW and SW
development, and system evaluation and validation, ...

RISC-V VP++ [4.9]

Extensible and configurable SystemC-based,
open-source RISC-V VP

RISC-V 32/64 bit, single/multi-core, RISC-V Vector Version 1.0 [2: 3]
Small uC based systems (e.g. bare metal SW, RTOS)

Complex application processor based systems with virtual memory, graphics,
iInput, mass-storage, network ... (e.g. interactive, graphical Linux applications)

RISC-V Cores =2 Interpreter-based Instruction Set Simulators (ISS)

- Easy to understand: Fast to create, easy to adapt and extend

Fast Interpreter-Based ISS 1

Motivation: Improve performance significantly while preserving
comprehensibility and adaptability of an interpreter-based ISS

ISS (RV32/RV64 Core) -~ DMI Access
.| | Decode/ LSCache }—b DMem IF oo
- MMU
Interpret/
W Execute DBBCache }-—» IMem IF . TLB:
L-T

TLM Transactions¢ Y 1
TLM 2.0 Bus |Memory Map —)H Memory

5 UART,
¢ PLIC |« Vass Storage
' e - ramebuffer,

Tr;z?:ﬂ,: Ext. Interrupts Il Pe"pherals Mouse,
Keyboard,

5}1\.} Network, ...
Interrupts

1. Dynamic Basic Block Cache (DBBCache)

-> Speed up execution (Fetch, Decode, Dispatch)
= Extracts Dynamic Basic Blocks (DBBs) at runtime

» (Caches as much data as possible for ISS instruction processing
(Operationld, Instruction Word, Control flow structure, ...)

= Basis for further optimizations: Computed goto, Fast/Slow path, ...

2. Load/Store Cache (LSCache)

-> Speed up memory access
= Direct mapped cache for 256 in-simulation page addresses

= Direct translation of in-simulation virtual addresses to host system memory
addresses

Million Instructions per Second

La Cité des Sciences et de I'lndustrie, Paris

{MIPS)

x10.32
VP Original

x1.96
Spike

linear_alg-mid loops-all-mid nnet_tes p radix a zi prboom

100x100-sp 10k-sp
Based on [1] (updated)

Evaluation = No significant negative impact on comprehensibility or adaptability

Vector Simulation Performance

Workload: fbDOOM-RISCV
= Linux port of a classic game from the 1990s
= optimized for RVV by Semidynamics
= Non-vectorized and (RVV) Vectorized variants
» Disabled frame-rate limitation

Measurement:

= Avg. Frames per Second (FPS) measurement
(w.r.t. real host wall-clock time - Simulation Performance)

= Avg. Million Executed Instructions Per Frame (MIPF)

Results:

45 7

M non-vectorized Mvectorized 416 M non-vectorized M vectorized

40
6 5.8
35
30

25

20

15.7

15

Average Frames/Second

10

Average Million Instructions per Frame

1
9

0 -
Original VP FastISS VP Original VP FastISS VP

Figure 1: Average FPS on achieved on RISC-V VP++ Figure 2: Average MIPF executed by RISC-V VP4

0

= |Improved RVV simulation performance by x2.65 over Original VP (Figure 1)
= Non-vectorized workloads x7.78 speedup (Figure 1)

-> Vectorized code uses fewer but more complex instructions - lower MIPF
for vectorized than non-vectorized (Figure 2)

- FastlSS mainly reduces instruction processing overhead - non-vectorized
workloads can benefit more from optimizations

-> Significant performance improvement for vectorized code (x2.65)
-2 Non-vectorized workloads can benefit more from optimizations

References

1] M. Schlagl and D. Grol3e. “Fast interpreter-based instruction set simulation for virtual prototypes” in DATE, 2025
2] M. Schlagl and D. Grol3e, “Single instruction isolation for RISC-V vector test failures™ in ICCAD, 2024

3] M. Schlagl, M. Stockinger, and D. Grolde, “A RISC-V “V” VP: Unlocking vector processing for evaluation at the
system level”, in DATE, 2024

[4] M. Schlagl, C. Hazott, and D. Grol3e, “RISC-V VP++: Next generation open-source virtual prototype”, in OSDA
Workshop @ DATE, 2024

[5] M. Schlagl and D. Grol3e, “GUI-VP Kit: A RISC-V VP meets Linux graphics - enabling interactive graphical
application development”, in GLSVLSI, 2023

This work has been partially supported by the LIT Secure and Correct Systems Lab funded by the State of Upper Austria.

