
Extensible and configurable SystemC-based,

open-source RISC-V VP

▪ RISC-V 32/64 bit, single/multi-core, RISC-V Vector Version 1.0 [2, 3]

▪ Small uC based systems (e.g. bare metal SW, RTOS)

▪ Complex application processor based systems with virtual memory, graphics,

input, mass-storage, network … (e.g. interactive, graphical Linux applications)

RISC-V Cores → Interpreter-based Instruction Set Simulators (ISS)

→ Easy to understand: Fast to create, easy to adapt and extend

→ Performance very limited: Fetch, Decode, Dispatch and Execute

for every Instruction

Manfred Schlägl Daniel Große
Institute for Complex Systems, Johannes Kepler University Linz

manfred.schlaegl@jku.at, daniel.grosse@jku.at

FastISS RISC-V VP++: A Simulation
Performance Evaluation of RVV Workloads

Introduction

This work has been partially supported by the LIT Secure and Correct Systems Lab funded by the State of Upper Austria.

RISC-V VP++ [4, 5]

RISC-V "V" Vector Extension (RVV) version 1.0

32 vector registers and 7 control/status registers added

Generic implementation of 624 instructions

Integration in RV32 and RV64 Instruction Set Simulator (ISS) → Code generator

Fast Interpreter-Based ISS [1]

Motivation: Improve performance significantly while preserving

comprehensibility and adaptability of an interpreter-based ISS

1. Dynamic Basic Block Cache (DBBCache)

→ Speed up execution (Fetch, Decode, Dispatch)

▪ Extracts Dynamic Basic Blocks (DBBs) at runtime

▪ Caches as much data as possible for ISS instruction processing

(OperationId, Instruction Word, Control flow structure, …)

▪ Basis for further optimizations: Computed goto, Fast/Slow path, …

2. Load/Store Cache (LSCache)

→ Speed up memory access

▪ Direct mapped cache for 256 in-simulation page addresses

▪ Direct translation of in-simulation virtual addresses to host system memory

addresses

Vector Simulation Performance

Evaluation → No significant negative impact on comprehensibility or adaptability

References

RISC-V VP++FastISS RVV Paper

Scalar Simulation Performance [1]

[1] M. Schlägl and D. Große. “Fast interpreter-based instruction set simulation for virtual prototypes” in DATE, 2025

[2] M. Schlägl and D. Große, “Single instruction isolation for RISC-V vector test failures” in ICCAD, 2024

[3] M. Schlägl, M. Stockinger, and D. Große, “A RISC-V “V” VP: Unlocking vector processing for evaluation at the

system level”, in DATE, 2024

[4] M. Schlägl, C. Hazott, and D. Große, “RISC-V VP++: Next generation open-source virtual prototype”, in OSDA

Workshop @ DATE, 2024

[5] M. Schlägl and D. Große, “GUI-VP Kit: A RISC-V VP meets Linux graphics - enabling interactive graphical

application development”, in GLSVLSI, 2023

FastISS Paper

Based on [1] (updated)

→

Workload: fbDOOM-RISCV

▪ Linux port of a classic game from the 1990s

▪ optimized for RVV by Semidynamics

▪ Non-vectorized and (RVV) Vectorized variants

▪ Disabled frame-rate limitation

Measurement:

▪ Avg. Frames per Second (FPS) measurement

(w.r.t. real host wall-clock time → Simulation Performance)

▪ Avg. Million Executed Instructions Per Frame (MIPF)

Results:

▪ Improved RVV simulation performance by x2.65 over Original VP (Figure 1)

▪ Non-vectorized workloads x7.78 speedup (Figure 1)

→ Vectorized code uses fewer but more complex instructions → lower MIPF

for vectorized than non-vectorized (Figure 2)

→ FastISS mainly reduces instruction processing overhead → non-vectorized

workloads can benefit more from optimizations

→ Significant performance improvement for vectorized code (x2.65)

→ Non-vectorized workloads can benefit more from optimizations

RISC-V Vector Extension (RVV):

▪ SIMD: Single Instruction, Multiple Data

▪ Vector Architecture: Generic instructions, vector

type/length dynamically configurable

▪ Acceleration of signal processing, multimedia,

machine learning, …

Virtual Prototypes (VPs): executable software models

of a hardware system that run on a host computer.

▪ Modeled at the transaction level (TLM)

▪ Binary compatible to real/physical hardware

▪ Widely used by semiconductor global players

→ Industrial-proven

▪ Modeled in SystemC

(C++ class library, IEEE1666-2023)

Applications: Early design space exploration, parallelization of HW and SW

development, and system evaluation and validation, …

