
Advanced Verification Suite for RISC-V Cores∗

Murat Tökez1†, Merve Eyüboğlu1, Ibrahim Mouamar Ali Ahmed1,
Melike Atay Karabalkan1, Berna Ors1,2

1Electra IC, Turkey

2Istanbul Technical University, Turkey

Abstract

We have developed a verification enviroment called ElectraIC Advanced Verification Suite (EAVS) for verification
of any RISC-V core. EAVS includes an Instruction Set Simulator (ISS), YAML configuration files, and a
RISC-V Core UVM Testbench. The RISC-V Core UVM Testbench contains a RISC-V Core, referred to as the
Design Under Test (DUT), along with an Instruction Generator, Compiler, and a RISC-V Core Base Test.

Introduction
ElectraIC Advanced Verification Suite (EAVS) in-
cludes an Instruction Set Simulator (ISS), YAML con-
figuration files, and a RISC-V Core Universal Verifi-
cation Methodology (UVM) Testbench, as shown in
Fig. 1. The RISC-V Core UVM Testbench contains
a RISC-V Core, referred to as the Design Under Test
(DUT), along with an Instruction Generator, Compiler,
and a RISC-V Core Base Test.

ISS operates as the core’s reference model, acting
as a golden model to determine whether the core’s
executed instructions are correct. Spike is a RISC-
V ISA simulator officially released by the RISC-V
International Foundation, capable of simulating one
or more RISC-V harts [1].

The instruction set generator (ISG) produces as-
sembly file which include the configured instructions
according to the targeted test scenarios, where the in-
structions are randomly generated in accordance with
the scenario’s constraints. Examples of various instruc-
tion generators include Force-riscv [2], an ISG for the
RISC-V ISA from OpenHW Group which supports all
instructions of RV32GC, and Google riscv-dv [3].

The RISC-V Formal Interface (RVFI) [4] is a inter-
face designed to facilitate the formal verification of
RISC-V processors. It provides a comprehensive set of
signals that capture the internal state and behavior of
a processor during the execution of each instruction.

Advanced Verification Suite for
RISC-V Cores

The primary objective of this study is to address all
stages of the verification flow in a manner that com-
plies with standards and remains configurable. With
this goal in mind, the system has been designed to ac-
commodate different RISC-V cores; as an example, the
verification of the cv32e40p core is presented. Figure 1

∗*This work was supported by TUBITAK 3231156 project.
†Corresponding author: murat.tokez@electraic.com

Figure 1: EAVS RISC-V Core Verification Environment

illustrates the overall architecture and the interactions
among its components.

Components of the Verification
Environment

ISS We have subsequently converted the complex log
format obtained from Spike into a “.csv” file. Currently,
Spike runs externally rather than being integrated into
the UVM environment.

YAML Configuration YAML configuration files
ensure that test parameters, such as boot_address,
virtual peripheral adresses, ram address width etc. ,
and scenarios like floating-point tests, loop tests, and
CSR tests, as well as memory mapping used during
verification, are managed in a consistent manner. We
have configured the memory map information to avoid
any conflicts with Spike’s embedded memory map.
Having parameters that can be flexibly modified allows
users to quickly integrate different RISC-V cores or
custom extensions into the verification flow.

Instruction Generator and Compiler In this
study, COREV-DV[5]—layered on top of Google riscv-
dv[3]—has been used. We propose EAVS-DV as an
enhancement to COREV-DV.

RISC-V Summit Europe, Paris, 12-15th May 2025 1

mailto:murat.tokez@electraic.com

Table 1: RVFI Agent Log Output Snippet
1 TIME | RVFI | CYCLE| ORDER | PC | INSTR | M | RS1 | RS1_DATA | RS2 | RS2_DATA | RD | RD_DATA
2 146961.000 ns | RVFI | 48981 | 11472 | 8000986c | 80400bb7 | M | x0 | 00000000 | x4 | 00000000 | x23 | 80400000
3 146970.000 ns | RVFI | 48984 | 11473 | 80009870 | 00001497 | M | x0 | 00000000 | x0 | 00000000 | x9 | 8000a870
4 146973.000 ns | RVFI | 48985 | 11474 | 80009874 | 8104a483 | M | x9 | 8000a870 | x16 | ffffffff | x9 | 075bcd15
5 146979.000 ns | RVFI | 48987 | 11475 | 80009878 | 009ba023 | M | x23 | 80400000 | x9 | 075bcd15 | x0 | 8000a870
6 146982.000 ns | RVFI | 48988 | 11476 | 8000987c | 30405073 | M | x0 | 00000000 | x4 | 00000000 | x0 | 00000000

Table 2: Memory Agent Log Output Snippet
1 TIME | OBI | RW | ADDR | BE | DATA
2 146946.000 ns | OBI | W | 80500000 | f | 0000000a
3 146970.000 ns | OBI | R | 8000a080 | f | 075bcd15
4 146976.000 ns | OBI | W | 80400000 | f | 075bcd15

The assembly file generated by the instruction gener-
ator is compiled using a compiler, producing a machine
language file. This file is then written into the memory
defined within the memory agent and subsequently
delivered to the core.

RISC-V Core UVM Environment

The environment has been built following the UVM
testbench architecture [6], providing detailed monitor-
ing of the core’s program counter (PC), instruction
and data memory, and register file behavior. Within
this environment, components such as the Memory
Agent, RVFI Agent, Scoreboard, Virtual Sequencers,
and Coverage work together to ensure comprehensive
verification.

The Memory Agent includes both instruction and
data memory. It has two primary duties: driving
instructions and data to the DUT using the sequencer
and driver, and observing the program counter (PC)
and data addresses from the DUT with the monitor.

The RVFI Agent is a passive agent that continuously
monitors the connected RVFI, which can be configured
to include any signal in the pipeline stages.

The cv32e40p tracer exhibits several issues that im-
pact the accuracy of instruction decoding and logging.
The srai instruction is improperly decoded. Addi-
tionally, all compressed instructions are logged with
incorrect binary formats, as their uncompressed coun-
terparts instead of the compressed format. Moreover,
lui and auipc instructions append three zeros to the
LSB of their immediate values, leading to operand
comparison errors. Lastly, all pseudo-instructions are
decoded in their normal form, which diverges from
Spike’s convention. For these reasons, the cv32e40p
tracer was not utilized in this work.

Virtual Sequencers coordinate multiple sequencers
across different agents within the same test environ-
ment.

Tests and Results
In this study, a wide range of randomly generated tests
was applied to the cv32e40p core, and the resulting
data were collected. Output snippets from the RVFI
and Memory Agent monitors are provided in Tables 1
and 2.

The same randomly generated tests were also ex-
ecuted on the Spike ISS, with the results shown in

Table 3: Spike Log Output Snippet
1 core 0: 0x8000986c (0x80400bb7) lui s7, 0x80400
2 core 0: 3 0x8000986c (0x80400bb7) x23 0x80400000
3 core 0: 0x80009870 (0x00001497) auipc s1, 0x1
4 core 0: 3 0x80009870 (0x00001497) x9 0x8000a870
5 core 0: 0x80009874 (0x8104a483) lw s1, -2032(s1)
6 core 0: 3 0x80009874 (0x8104a483) x9 0x075bcd15 mem 0x8000a080
7 core 0: 0x80009878 (0x009ba023) sw s1, 0(s7)
8 core 0: 3 0x80009878 (0x009ba023) mem 0x80400000 0x075bcd15
9 core 0: 0x8000987c (0x30405073) csrwi mie, 0

10 core 0: 3 0x8000987c (0x30405073) c772_mie 0x00000000

Table 3.
We have converted the log files to a CSV format,

a snippet of which is presented in Table 4. In the
Spike ISS .log file, memory contents are displayed
only for load instructions; therefore, both data and
addresses are compared for load instructions, whereas
only addresses are compared for store instructions.
The mode indicates the privilege level at which the
program is running: this corresponds to the M column
in the RVFI Agent log and to lines labeled with 3 in
the Spike ISS log.

Table 4: Spike and Core Random Arithmetic Test Results
pc instr gpr mem csr binary mode instr operand

0x8000986c lui s7:0x80400000 0x80400bb7 3 "lui s7 0x80400" "s7 0x80400"
0x80009870 auipc s1:0x8000a870 0x00001497 3 "auipc s1 0x1" "s1 0x1"
0x80009874 lw s1:0x075bcd15 mem[0x8000a080] 0x8104a483 3 "lw s1 -2032(s1)" "s1 1 -2032"
0x80009878 sw mem[0x80400000]:0x075bcd15 0x009ba023 "sw s1 0(s7)" "s1 s7 0"
0x8000987c csrrwi mie:0x00000000 0x30405073 "csrwi mie 0" "zero mie 0"

After comparing the generated CSV files, we ob-
served that each random test produced by eavs-dv
successfully executed on the cv32e40p RISC-V core.

Conclusion
We have designed a verification environment for RISC-
V Cores. The advantage of our design is mainly our
proposal as EAVS-DV which is an enhancement over
COREV-DV. All fixed address spaces in COREV-DV
have been parameterized in EAVS-DV to enable com-
patibility with any DUT and Spike that has memory
address limitations.

References

[1] RISC-V International. Spike: The RISC-V ISA Simulator.
https://github.com/riscv/riscv-isa-sim. Accessed:
2024-06-01. 2020.

[2] OpenHW Group. Force-riscv: A RISC-V Instruction Gen-
erator. https://github.com/openhwgroup/force-riscv.
Accessed: 2024-06-01. 2021.

[3] Google. riscv-dv: RISC-V Directed Verification. https:
//github.com/google/riscv-dv. Accessed: 2024-06-01.
2020.

[4] SymbioticEDA. RISC-V Formal Interface (RVFI). https:
//github.com/SymbioticEDA/riscv-formal. 2021.

[5] OpenHardware. corev-dv: Library of extensions to the
Google riscv-dv instructuion stream generator. https://
docs.openhwgroup.org/projects/core- v- verif/en/
latest/corev_dv.html. 2021.

[6] Accellera Systems Initiative. UVM User’s Guide. https:
//accellera.org. 2015.

2 RISC-V Summit Europe, Paris, 12-15th May 2025

https://github.com/riscv/riscv-isa-sim
https://github.com/openhwgroup/force-riscv
https://github.com/google/riscv-dv
https://github.com/google/riscv-dv
https://github.com/SymbioticEDA/riscv-formal
https://github.com/SymbioticEDA/riscv-formal
https://docs.openhwgroup.org/projects/core-v-verif/en/latest/corev_dv.html
https://docs.openhwgroup.org/projects/core-v-verif/en/latest/corev_dv.html
https://docs.openhwgroup.org/projects/core-v-verif/en/latest/corev_dv.html
https://accellera.org
https://accellera.org

	Introduction
	Advanced Verification Suite for RISC-V Cores
	Components of the Verification Environment
	ISS
	YAML Configuration
	Instruction Generator and Compiler

	RISC-V Core UVM Environment

	Tests and Results
	Conclusion

