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Abstract

This work presents RISCV-PySim, a Python-based simulator for RISC-V processors. RISCV-PySim is
designed to incorporate and evaluate custom instructions, facilitating the development of Domain-Specific
Hardware Accelerators (DSHA). As a case study, we implemented a General Matrix Multiply (GEMM)
benchmark using scalar, vector and systolic array approaches. To estimate the speed-up between these three
implementations, we implemented a simplified model of a in-order Central Processing Unit (CPU). Then, we
compared the efforts to do the same using the State-of-the-Art (SOTA) gem5 simulator.

RISCV-PySim is a particularly useful tool to verify the correctness and semantics of new instructions, a
task that would require significant effort in the SOTA simulators. Additionally, the modular architecture of
RISCV-PySim enables seamless integration with various performance models, allowing adapting to specific needs.

Introduction

The State-of-the-Art (SOTA) Domain-Specific Hard-
ware Acceleratorss (DSHAs) have demonstrated im-
provements in performance and energy efficiency over
general-purpose Central Processing Units (CPUs) [1].
Furthermore, the RISC-V Instruction Set Architec-
ture (ISA) is designed to take advantage of this by
allowing the integration of custom instructions, un-
like traditional ISAs. To develop new ISA extensions
and custom instructions, it is crucial to have tools
to evaluate these new instructions before starting the
Hardware (HW) implementations. There are several
SOTA simulators that are capable of modeling and
evaluating these new instructions [2]. However, SOTA
simulators have become increasingly complex, to the
point where evaluating new instructions has become a
time-consuming and cumbersome process.

This work introduces RISCV-PySim, a modular and
flexible Python-based simulator that simplifies the inte-
gration of custom instructions into the RISC-V ISA. It
follows a top-down approach, starting with application
requirements and acceleration strategies to facilitate
the development and validation of DSHAs. Instead of
executing the compiled binary outputs, RISCV-PySim
runs Assembly (ASM) code generated by the standard
RISC-V compiler, allowing for seamless integration of
custom instructions into the standard C code.
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Methodologies

The simulator is based on an Finite State Machine
(FSM) with two decoupled modular components: The
Functional Engine, which executes the program and
generates traces, and the Performance Engine, which
evaluates the execution cycles (Fig. 1).
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Figure 1: Proposed RISCV-PySim architecture

Functional Engine: This component executes in-
structions atomically, allowing execution traces to be
sensed to an independent performance model imple-
mentation. Its main components are: Fetch: Re-
trieves the instruction from Level 1 Instruction Cache
(L1-I) and controls the program execution flow through
the Program Counter (PC). Decode: Decodes the
instruction, obtaining the operands and the specific
computation function that must be executed. Branch
Evaluation (BE): Executes the evaluation of condi-
tional and unconditional branches to determine the
next PC. Execute Stage: Executes the computa-

RISC-V Summit Europe, Paris, 12-15th May 2025 1

mailto:carlos.rojas@bsc.es


tion function of each instruction, invoking statically
generated execution functions from the Decode stage.

Performance Engine: This component configures
architectural parameters to estimate the performance
of a given use case. It includes: Front-end: Imple-
ments a Branch Predictor (BP) model. Back-end:
Simulates a single-issue (in-order) CPU. Memory:
Uses the pycachesim [3] tool to estimate the cycles re-
quired for memory accesses. Analytical Model: We
used a simplified modeling approach [4] to estimate per-
formance considering latencies, branch mispredictions,
and accesses to Level 1 Data Cache (L1-D). However,
the modularity of the simulator allows the interchange
of a variety of performance models according to the
desired accuracy and requirements.

Use case

To evaluate RISCV-PySim, we used a General Ma-
trix Multiply (GEMM) benchmark using scalar, vector
and custom instructions. Custom instructions man-
age a DSHA based on a systolic array architecture to
multiply 8x8 matrices with 8-byte elements, stored in
row-major format. We introduce three custom instruc-
tions to compute with the systolic array write_buffer,
read_buffer and multiply. To maintain program order,
the systolic array instructions are executed in the com-
mit stage, and the CPU pipeline is stopped until the
execution has finished. The algorithm 1 describes the
operation of the systolic array, where the write_buffer
function transfers data from memory to the systolic ar-
ray. The multiplication operation is performed by the
multiply function, which processes data from bufferA
and bufferB, storing the result in bufferC. Finally, the
read_buffer function transfers the results from the
systolic array back to the main memory.

Algorithm 1: Systolic Array 8x8
for i← A.N ; i+ = 8 do

for k ← B.M ; k+ = 8 do
bufferA← block(Ai→i+7:k→k+7)
for m← B.N ;m+ = 8 do

bufferB ← block(Bk→k+7:m→m+7)
bufferC = multiply()

block(Ci→i+7:m→m+7)+ = bufferC)
end

end
end

We implemented a simple analytical performance
model based on the 64-bit Sargantana processor, which
supports the RV64G ISA, RVV 0.7.1, and a 7-stage
pipeline optimized for frequencies above 1 GHz [5].
The processor features an in-order pipeline that sup-
ports scalar, vector, and custom instructions. For the

vector data-path we used a maximum vector-length of
2 elements. The model includes a non-blocking L1-D,
optimizing load operations by handling multiple cache
misses. The memory subsystem consists of three levels:
L1: 3-cycle latency for hits (32KB). L2: 30-cycle la-
tency for hits (512KB). main memory: fixed latency
model of 250 cycles.

Discussion

The results show that in the used GEMM benchmark,
the acceleration between the scalar implementation
and the vector implementation was 1.68X. Similarly,
the speed-up achieved between the scalar implemen-
tation and the systolic array implementation with a
custom instruction was 9.63X. In this regard, using
a very simple performance model, we observe the po-
tential speed-up between the three implementations,
scalar, vector, and systolic array.

Integrating the architecture and functional model
of custom instructions and the systolic array accel-
erator required only 67 lines of code, demonstrating
the feasibility of implementing ISA extensions in a
very efficient manner compared to doing the same im-
plementation in the gem5 simulator that required the
modification of twelve different files and approximately
300 lines of code [2]. RISCV-PySim is a particularly
useful tool to evaluate and verify the semantics of new
custom instructions, which would otherwise require
significant effort to implement in many SOTA simu-
lators. Furthermore, its modular architecture allows
for seamless integration with a variety of performance
models according to specific needs.
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