
Get more information at bzl.es

2. Design flow: The simulator is based on a Finite State Machine (FSM) with two
decoupled modules.

Functional Engine, executes instructions atomically to generate execution traces. It
includes:

Fetch: Retrieves instructions and controls flow via the Program Counter (PC).
Decode: Decodes instructions to extract operands and operations.
Branch Evaluation (BE): Determines the next PC by evaluating branches.
Execute Stage: Performs the operations using functions from the Decode stage.

Performance Engine, estimates system performance by configuring architectural
parameters. It includes:

 Front-end: Models branch prediction.
Back-end: Simulates a single-issue, in-order CPU.
Memory: Uses pycachesim to model memory access latency.
Analytical Model: Calculates performance based on latencies, mispredictions, and
Level 1 Data Cache (L1-D) accesses.

1. Introduction: Domain-Specific Hardware Accelerators (DSHAs) offer significant gains in performance and energy efficiency over
general-purpose Central Processing Units (CPUs). This work presents RISCV-PySim, a Python-based RISC-V simulator designed to
integrate and evaluate custom instructions, aiding DSHA development. RISCV-PySim simplifies the verification of new instructions,
reducing the overhead typically associated with traditional simulators. Additionaly, Its modular design enables easy integration with
different performance models, making it highly adaptable to specific design needs.

3. Evaluations: To evaluate RISCV-PySim, we used a General Matrix Multiply (GEMM) benchmark using
scalar, vector and a DSHA based on a systolic array architecture. A simplified in-order CPU model based on
the 64-bit Sargantana processor (7-stage pipeline, RV64G and RVV 0.7.1 support) was used and compared
against the gem5 simulator.

Three custom instructions were added to work with a systolic array accelerator (Algorithm 1),
significantly boosting performance: The vector implementation achieved a 1.68X speed-up over the
scalar version, while the systolic array with custom instructions achieved a 9.63X speed-up.
Integrating these custom extensions into RISCV-PySim only required 67 lines of code, compared to
modifying 12 files and about 300 lines in gem5.

Driving Innovation for HPC

Este proyecto está impulsado por el Ministerio para la Transformación Digital y de la Función Pública, en el marco del Fondo de Resiliencia y Recuperación -y la Unión Europea- NextGenerationEU.

Acknowledgment

This publication is promoted by
the Barcelona Zettascale
Laboratory, backed by the
Ministry for Digital Transformation
and of Public Services, within the
framework of the Recovery,
Transformation, and Resilience
Plan – funded by the European
Union – NextGenerationEU.

RISCV-PySim: A Modular and Flexible Python-Based RISC-V Simulator

Execute

Functional-Engine

Next PC Fetch PC

Instruction

Branch
Evaluation

Decode
Back-end

(Single issue in order
CPU Model)

Memory (pycachesim)

Analytical Model

Performance-Engine

Front-end
(Branch predictor model)

Carlos Rojas Morales¹˒², Víctor Asanza¹, Julian Pavon¹˒², Ivan Vargas Valdivieso¹˒²,
Erick Brandon Cureño Contreras³, and Adrian Cristal¹

¹Barcelona Supercomputing Center (BSC)
²Universitat Politècnica de Catalunya (UPC)

³Centro de Investigación en Computación, Instituto Politécnico Nacional (CIC-IPN)
E-mail: carlos.rojas@bsc.es

