
Snooper

Snooper: A Flexible Tracing Solution for Fast
Simulation and Analysis in RISC-V

Santiago Monserrat Campanello†, Julian Pavon†∗ and Adrian Cristal†

†Barcelona Supercomputing Center
∗Universitat Politecnica de Catalunya
E-mail: santiago.monserrat@bsc.es

Abstract

Hardware simulation and modeling are essential for computer architecture research, enabling early-stage evalua-
tion without full hardware implementation. Trace-based simulation tools are advantageous for quickly modeling
CPU and memory system performance. Nonetheless, a proper instruction tracing tool for the RISC-V ISA is
currently missing. We present Snooper, a fast and flexible RISC-V instruction tracer built as a QEMU TCG
plugin. Snooper extracts information (e.g., source/destination registers) per executed instruction and generates
customizable trace files, making it compatible with state-of-the-art trace-based CPU simulators. Supporting both
user-mode and full-system execution, Snooper enables in-depth RISC-V analysis, including OS-level evaluation.
We validate the traces generated by Snooper using ChampSim achieving an average 89% modeling accuracy
compared to a RTL Out-of-order CPU running in an FPGA.

Introduction

Computer architecture simulation is essential for re-
search, design verification, and accelerating hardware
development by enabling early evaluation without RTL
(Register Transfer-Level) development overhead.

In this context, trace-based simulators (e.g.,[1]), are
ideal for early-stage architectural exploration, offering
fast CPU and memory system modeling when high-
level abstraction is sufficient. They achieve this by
replaying pre-recorded execution traces instead of dy-
namically executing binaries, avoiding the overhead
of full instruction simulation. This makes trace-based
simulators significantly faster than event-driven and
cycle-accurate simulators [2].

However, state-of-the-art trace-based simulators lack
RISC-V ISA support, as available traces and instruc-
tion tracing tools are primarily for x86 and ARM. As a
result, developing and testing new ideas based on these
available traces is unrepresentative of RISC-V systems
and unsuitable for accurate performance analysis.

To bridge the gap between state-of-the-art trace-
based simulators and the RISC-V ISA, we propose
Snooper, a fast and flexible RISC-V tracer built as
a QEMU TCG (Tiny Code Generator) plugin [3].
Snooper leverages QEMU’s dynamic binary transla-
tion support to efficiently extract 25 metadata char-
acteristics (e.g., source/destination registers, branch
behavior, among others) for each executed instruction
and generate customizable trace files. Users can define
which metadata to include and its order, through an
input configuration file. This flexibility enables, for ex-
ample the use of simulators originally designed for x86
(e.g., ChampSim [1]) with other Instruction Set Archi-
tectures (ISAs). Additionally, Snooper supports both

user-mode and full-system tracing, enabling RISC-V
Operating System (OS) evaluation.

Snooper Design and Features

Snooper, implemented as a QEMU TCG plugin, en-
ables RISC-V trace generation without requiring na-
tive execution. QEMU’s TCG backend provides an
Application Programming Interface (API) to access
translation and execution details. By leveraging this
API, Snooper efficiently instruments every executed
instruction, extracting detailed metadata for trace
generation and analysis.

RISC-V
Binary / OS

Magic Instr

Magic Instr

ROI

QEMU

TCG
Translator

Native host
execution

Snooper

Instruction info extractor
{coreId, pc, src1, src2, dst, addr, ...}

Trace
generator

Trace format
order: {pc, dst, src1, addr}

Output
tracesTrace-based

Performance model
e.g., Champsim simulator

1
2

3
4

5

Figure 1: Overview of Snooper plugging for QEMU.

Figure 1 presents Snooper’s system overview.
QEMU loads an executable 1 —either a user-mode
program or an OS —and supports magic instructions
to define the Region of Interest (ROI), similar to other
tracing tools [1, 4]. Using dynamic binary translation,

RISC-V Summit Europe, Paris, 12-15th May 2025 1



Snooper

QEMU translates and executes the input binary 2 ,
while Snooper’s information extractor simultaneously
gathers metadata for each instruction 3 . The ex-
tracted data is then processed by the trace generator,
which organizes it based on the user-defined configu-
ration 4 , producing per-core trace files 5 .

Snooper supports two trace generation modes: (i)
Plain binary compatible with simulators such as
ChampSim [1] and Snipersim [5]; and (ii) a Comma
Separated Value (CSV) format, which can be used
with simple/custom analytical models.
User-mode and full-system support. Snooper
supports both user-mode and full-system execution
in QEMU. In user-mode, OS calls are emulated, and
traces capture only user-space instructions, similar to
available traces for x86 and ARM. In full-system mode,
QEMU boots a complete OS (e.g., Ubuntu), emulating
I/O devices and peripherals, allowing Snooper to trace
all executed instructions, including OS calls.

Current trace-based simulators do not support full-
system simulation primarily due to the absence of
OS-level information in available traces. Unlike other
tracing tools, in full-system mode, Snooper includes OS
data —such as virtual-to-physical address translations,
system calls, among others —in the output traces.

By doing this, snooper enables implementing full-
system support in trace-based simulators.

Evaluation

Simulator. We used the ChampSim simulator to
model an in-house Out-of-Order RISC-V SoC and
configured Snooper via its configuration file to generate
traces compatible with ChampSim’s format.
Benchmarks. We use Snooper to trace three
graph processing benchmarks: Breadth-first search
(BFS), Pagerank (PR) and Single-Source Shortest Path
(SSSP) from the GAP benchmark [6].
Experiments. To validate the accuracy of Snooper’s
traces, all experimental results are normalized to our
in-house RTL SoC execution time (running on an
FPGA). Additionally, we aim to highlight how exist-
ing traces, generated for other ISAs, are unsuitable
for evaluating RISC-V performance due to differences
in ISA design, compilation tools, and software stack
maturity. To this end, we compile the evaluated bench-
marks for both RISC-V and x86, generate traces using
Snooper and Pin respectively, and evaluate them under
the same ChampSim configuration.
Results. Figure 2 shows the accuracy results for all
the experiments. We make two observations:

(i) Snooper+ChampSim achieves an average 89%
accuracy, indicating effective performance modeling.

(ii) On average, Pin-based traces perform 2.6×
higher error rates, underscoring the importance of

RISC-V trace generation tools for accurate perfor-
mance evaluation.

BFS PR SSSP
0%

20%
40%
60%
80%

100%

N
or

m
. A

cc
ur

ac
y

92 89 91
76 79 73

Benchmarks

Snooper Pin (x86)

Figure 2: Simulation accuracy comparison between
Snooper and Pin traces, normalized to an RTL RISC-V
core implementation.

Discussion

We proposed Snooper, a flexible RISC-V tracer based
on the QEMU TCG plugins. Our evaluation shows
that combining Snooper with a state-of-the-art trace-
based simulator allows quick evaluation of RISC-V
architectures with a adequate accuracy (89%).
Multi-ISA support. Although Snooper generates
RISC-V traces, the QEMU TCG plugin shares com-
mon data structures across all supported ISAs (e.g.,
x86 and ARM). This makes it easy to extend Snooper
for other ISAs, offering a robust tool for computer
architecture research.
Simple performance models. In our evaluation we
used ChampSim for the probe of concept of Snooper.
However, Snooper can be used together with simpler
analytical models to accelerate simulation time.

References

[1] Nathan Gober et al. The Championship Simulator: Archi-
tectural Simulation for Education and Competition. 2022.
arXiv: 2210.14324 [cs.AR]. url: https://arxiv.org/
abs/2210.14324.

[2] Ayaz Akram and Lina Sawalha. “A Survey of Computer
Architecture Simulation Techniques and Tools”. In: IEEE
Access 7 (2019), pp. 78120–78145. doi: 10.1109/ACCESS.
2019.2917698.

[3] QEMU Project Developers. QEMU, TCG Emulation.
https : / / www . qemu . org / docs / master / devel / index -
tcg.html. [Online; accessed 23-Jan-2025]. 2025.

[4] Intel. Pin. http://pintool.intel.com/. [Online; accessed
25-Jan-2025]. 2025.

[5] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout.
“Sniper: Exploring the level of abstraction for scalable and
accurate parallel multi-core simulation”. In: Proceedings
of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis. 2011.

[6] Scott Beamer, Krste Asanović, and David Patter-
son. “The GAP benchmark suite”. In: arXiv preprint
arXiv:1508.03619 (2015).

2 RISC-V Summit Europe, Paris, 12-15th May 2025

https://arxiv.org/abs/2210.14324
https://arxiv.org/abs/2210.14324
https://arxiv.org/abs/2210.14324
https://doi.org/10.1109/ACCESS.2019.2917698
https://doi.org/10.1109/ACCESS.2019.2917698
https://www.qemu.org/docs/master/devel/index-tcg.html
https://www.qemu.org/docs/master/devel/index-tcg.html
http://pintool.intel.com/

	Introduction
	Snooper Design and Features
	Evaluation
	Discussion

