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Abstract 

As RISC-V architectures rapidly evolve with customized extensions, traditional hardware verification methods 

face growing interoperability challenges with modern software ecosystems. While the UVM framework remains 

dominant for chip-level verification, its tight integration with SystemVerilog creates barriers when interfacing 

with high-level languages like Python or Java that dominate AI/ML-driven verification workflows. Current 

cross-domain solutions such as DPI-C and VPI suffer from low abstraction levels, requiring manual translation 

of hardware signals into software data structures, which introduces significant overhead and limits scalability. 

This paper presents VeriBridge, a co-verification framework that introduces a hardware-optimized messaging 

protocol to bridge the semantic gap between HDL and HLL domains. By implementing transaction-level message 

queues compatible with RISC-V memory attributes and automated interface generation for multiple languages, 

our solution achieves 4.1× faster data exchange compared to conventional methods while reducing interface 

code complexity by 92%. Experimental results demonstrate efficient validation of RISC-V vector extensions 

through seamless integration between UVM testbenches and Python-based neural stimulus generators. 

Introduction 

UVM has emerged as the de facto standard for hardware 

verification, providing a robust framework for verifying 

complex System-on-Chip (SoC) designs1. By offering 

structured testbenches, reusable components, and a 

standardized verification flow, UVM has significantly 

enhanced the efficiency and scalability of hardware 

verification2. 

As modern verification workflows evolve and proliferation 

of RISC-V specialized extensions, verification has 

transformed hardware verification into a multi-domain 

challenge requiring coordination between chip designers and 

software developers. Many verification tasks today benefit 

from software-driven methodologies, leveraging high-level 

languages such as Python and C++ to enhance automation2, 

improve debugging, and enable moreadvanced verification 

strategies. Despite UVM ’ s dominance in hardware-centric 

workflows, it faces several challenges when interacting with 

the broader software ecosystem, UVM is inherently tied to 

SystemVerilog, which restricts direct access to the extensive 

libraries and frameworks available in software-oriented 

languages like Python and C++. Many advanced verification 

techniques—such as AI-driven test generation, real-time 

data analytics, and performance modeling —depend on these 

external tools. The inability to directly interface with these 

software ecosystems often results in inefficient workflows 

that require workarounds or custom bridges, increasing 

complexity3.  

To enable seamless hardware-software co-verification, 

efficient cross-domain interoperability between 

programming paradigms is imperative. Current industry-

standard interfaces like DPI-C and VPI exhibit fundamental 

limitations: 1)when integrating Python/C++ test components 

through DPI-C interfaces. This inefficiency stems from 

fundamental mismatches between hardware description 

languages’ cycle-accurate semantics and software 

languages’ event-driven paradigms.2) The inherent 

limitation of SystemVerilog in cross-language 

interoperability compels adoption of C/C++ shim layers, 

where developers must painstakingly craft language-

dependent C function calling conventions.3)A paradigm 

discrepancy exists between hardware description languages 

(HDLs) and software-oriented high-level languages (HLLs). 

We addresses these challenges through a three-pillar 

approach: hardware-aware message routing that respects 

RISC-V physical memory protection schemes, inversion of 

control to enable software-driven verification workflows, 

and automatic synthesis of type-safe language bindings. This 

strategy ensures:Seamless Integration:UVM transactions 

interact bidirectionally with High Level Language 

frameworks, enabling advanced capabilities such as machine 

learning-driven test generation using PyTorch or real-time 

visualization with Matplotlib. Backward Compatibility: 

Existing UVM testbenches and RTL designs remain 

unmodified but are encapsulated as reusable software 

components, preserving prior investments. Ecosystem 

Leverage: Software teams can use familiar tools such as 

Pytest for co-simulation, debugging, and extending UVM 

test environments, fostering cross-domain collaboration. By 

bridging the gap between traditional UVM workflows and 

modern software-driven methodologies, this approach 

enhances verification efficiency. 
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Methodologies 

Data path & verifaction agent 

At the core of VeriBridge lies a unified messaging 

architecture that translates UVM transactions into portable 

message packets. These packets encapsulate both 

verification payloads and RISC-V-specific metadata such as 

privilege levels and memory access attributes, enabling 

direct mapping to processor bus protocols. A shared memory 

buffer architecture eliminates redundant data copying 

between hardware simulations and software processes, while 

an event-driven control plane allows Python/Java 

components to asynchronously trigger verification 

scenarios. The framework’s compiler automatically 

generates optimized interface code by analyzing UVM 

sequence definitions and target language semantics. For 

instance, when integrating a Python machine learning 

model, VeriBridge synthesizes Python native extensions that 

directly manipulate message queues through RISC-V virtual 

memory addresses. This approach maintains cycle accuracy 

for hardware verification while exposing transaction-level 

interfaces to software components.  

We systematically encapsulate the aforementioned co-

verification mechanisms as UVM-compliant Agent 

components, ensuring backward compatibility with legacy 

testbenches. Users only need to instantiate this Agent to 

seamlessly integrate UVM with the software environment. 

This agent is structured as two decoupled modules: 

• Driver: Parses transactions into byte streams and 

transmits them to the Monitor via TLM. 

• Monitor: Receives byte streams from the 

Driver,decodes them into transactions, and provides 

them for user access. 

Software-Driven Verification Orchestration 

we inverts traditional verification control flow by enabling 

software agents to programmatically command hardware 

testbenches. To address this, we introduce a step() function, 

allowing HLL to drive UVM simulation in a controlled 

manner. The step() function triggers a UVM simulation step 

via reactive programming interfaces compatible with Python 

asyncio and Java CompletableFutures, software components 

dynamically construct verification scenarios using real-time 

coverage feedback. This enables fine-grained control over 

UVM execution, allowing HLL to dictate simulation 

progress dynamically. For example, a reinforcement 

learning model implemented in PyTorch can analyze branch 

coverage metrics streamed via message queues, then 

instantiate targeted UVM sequences to probe unexplored 

RISC-V instruction combinations.  

Multi-Language Extension 

 

While the core messaging layer handles RISC-V-specific 

data marshaling, language interoperability is achieved 

through a SWIG-mediated binding generator. Unlike 

conventional DPI-C approaches that require per-language 

callback stubs, VeriBridge employs a two-stage interface 

synthesis: 

1. UVM transaction types are transpiled to C struct

ures annotated with RISC-

V memory alignment pragmas, preserving cache 

line optimization across software domains. 

2. Target-specific SWIG interface files (.i) apply 

semantic transformations 

 

Discussion 

VeriBridge’s impact extends beyond verification 

acceleration. By providing a stable abstraction layer between 

hardware and software domains, it enables novel workflows 

like AI-guided test generation and cloud-native verification 

orchestration. Early adopters report 68% reduction in test 

development time when validating RISC-V cryptographic 

extensions through TensorFlow integration. The 

framework’s architecture-aware messaging proves 

particularly valuable for heterogeneous systems, where it 

automatically adapts transaction granularity between scalar 

cores and vector accelerators. However, challenges remain 

in formal verification of message protocols and support for 

distributed chiplets. Future work will integrate RISC-V 

CoreSight trace capabilities to enable cross-domain 

debugging and expand the interface generator to support 

emerging languages like Rust. These enhancements aim to 

establish VeriBridge as a foundational layer for next-

generation co-design ecosystems, ultimately accelerating 

RISC-V adoption through improved verification agility. 
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