

RISC-V Summit Europe, Paris, 12-15th May 2025 1

Software-Hardware Co-Verification for Traditional

Verification Frameworks
Fangyuan Song1, Yunlong Xie1 and Jincheng Liu1

1Institute of Computing Technology, Chinese Academy of Sciences

Abstract

As RISC-V architectures rapidly evolve with customized extensions, traditional hardware verification methods

face growing interoperability challenges with modern software ecosystems. While the UVM framework remains

dominant for chip-level verification, its tight integration with SystemVerilog creates barriers when interfacing

with high-level languages like Python or Java that dominate AI/ML-driven verification workflows. Current

cross-domain solutions such as DPI-C and VPI suffer from low abstraction levels, requiring manual translation

of hardware signals into software data structures, which introduces significant overhead and limits scalability.

This paper presents VeriBridge, a co-verification framework that introduces a hardware-optimized messaging

protocol to bridge the semantic gap between HDL and HLL domains. By implementing transaction-level message

queues compatible with RISC-V memory attributes and automated interface generation for multiple languages,

our solution achieves 4.1× faster data exchange compared to conventional methods while reducing interface

code complexity by 92%. Experimental results demonstrate efficient validation of RISC-V vector extensions

through seamless integration between UVM testbenches and Python-based neural stimulus generators.

Introduction

UVM has emerged as the de facto standard for hardware

verification, providing a robust framework for verifying

complex System-on-Chip (SoC) designs1. By offering

structured testbenches, reusable components, and a

standardized verification flow, UVM has significantly

enhanced the efficiency and scalability of hardware

verification2.

As modern verification workflows evolve and proliferation

of RISC-V specialized extensions, verification has

transformed hardware verification into a multi-domain

challenge requiring coordination between chip designers and

software developers. Many verification tasks today benefit

from software-driven methodologies, leveraging high-level

languages such as Python and C++ to enhance automation2,

improve debugging, and enable moreadvanced verification

strategies. Despite UVM ’ s dominance in hardware-centric

workflows, it faces several challenges when interacting with

the broader software ecosystem, UVM is inherently tied to

SystemVerilog, which restricts direct access to the extensive

libraries and frameworks available in software-oriented

languages like Python and C++. Many advanced verification

techniques—such as AI-driven test generation, real-time

data analytics, and performance modeling —depend on these

external tools. The inability to directly interface with these

software ecosystems often results in inefficient workflows

that require workarounds or custom bridges, increasing

complexity3.

To enable seamless hardware-software co-verification,

efficient cross-domain interoperability between

programming paradigms is imperative. Current industry-

standard interfaces like DPI-C and VPI exhibit fundamental

limitations: 1)when integrating Python/C++ test components

through DPI-C interfaces. This inefficiency stems from

fundamental mismatches between hardware description

languages’ cycle-accurate semantics and software

languages’ event-driven paradigms.2) The inherent

limitation of SystemVerilog in cross-language

interoperability compels adoption of C/C++ shim layers,

where developers must painstakingly craft language-

dependent C function calling conventions.3)A paradigm

discrepancy exists between hardware description languages

(HDLs) and software-oriented high-level languages (HLLs).

We addresses these challenges through a three-pillar

approach: hardware-aware message routing that respects

RISC-V physical memory protection schemes, inversion of

control to enable software-driven verification workflows,

and automatic synthesis of type-safe language bindings. This

strategy ensures:Seamless Integration:UVM transactions

interact bidirectionally with High Level Language

frameworks, enabling advanced capabilities such as machine

learning-driven test generation using PyTorch or real-time

visualization with Matplotlib. Backward Compatibility:

Existing UVM testbenches and RTL designs remain

unmodified but are encapsulated as reusable software

components, preserving prior investments. Ecosystem

Leverage: Software teams can use familiar tools such as

Pytest for co-simulation, debugging, and extending UVM

test environments, fostering cross-domain collaboration. By

bridging the gap between traditional UVM workflows and

modern software-driven methodologies, this approach

enhances verification efficiency.

2 RISC-V Summit Europe, Paris, 12-15th May 2025

Methodologies

Data path & verifaction agent

At the core of VeriBridge lies a unified messaging

architecture that translates UVM transactions into portable

message packets. These packets encapsulate both

verification payloads and RISC-V-specific metadata such as

privilege levels and memory access attributes, enabling

direct mapping to processor bus protocols. A shared memory

buffer architecture eliminates redundant data copying

between hardware simulations and software processes, while

an event-driven control plane allows Python/Java

components to asynchronously trigger verification

scenarios. The framework’s compiler automatically

generates optimized interface code by analyzing UVM

sequence definitions and target language semantics. For

instance, when integrating a Python machine learning

model, VeriBridge synthesizes Python native extensions that

directly manipulate message queues through RISC-V virtual

memory addresses. This approach maintains cycle accuracy

for hardware verification while exposing transaction-level

interfaces to software components.

We systematically encapsulate the aforementioned co-

verification mechanisms as UVM-compliant Agent

components, ensuring backward compatibility with legacy

testbenches. Users only need to instantiate this Agent to

seamlessly integrate UVM with the software environment.

This agent is structured as two decoupled modules:

• Driver: Parses transactions into byte streams and

transmits them to the Monitor via TLM.

• Monitor: Receives byte streams from the

Driver,decodes them into transactions, and provides

them for user access.

Software-Driven Verification Orchestration

we inverts traditional verification control flow by enabling

software agents to programmatically command hardware

testbenches. To address this, we introduce a step() function,

allowing HLL to drive UVM simulation in a controlled

manner. The step() function triggers a UVM simulation step

via reactive programming interfaces compatible with Python

asyncio and Java CompletableFutures, software components

dynamically construct verification scenarios using real-time

coverage feedback. This enables fine-grained control over

UVM execution, allowing HLL to dictate simulation

progress dynamically. For example, a reinforcement

learning model implemented in PyTorch can analyze branch

coverage metrics streamed via message queues, then

instantiate targeted UVM sequences to probe unexplored

RISC-V instruction combinations.

Multi-Language Extension

While the core messaging layer handles RISC-V-specific

data marshaling, language interoperability is achieved

through a SWIG-mediated binding generator. Unlike

conventional DPI-C approaches that require per-language

callback stubs, VeriBridge employs a two-stage interface

synthesis:

1. UVM transaction types are transpiled to C struct

ures annotated with RISC-

V memory alignment pragmas, preserving cache

line optimization across software domains.

2. Target-specific SWIG interface files (.i) apply

semantic transformations

Discussion

VeriBridge’s impact extends beyond verification

acceleration. By providing a stable abstraction layer between

hardware and software domains, it enables novel workflows

like AI-guided test generation and cloud-native verification

orchestration. Early adopters report 68% reduction in test

development time when validating RISC-V cryptographic

extensions through TensorFlow integration. The

framework’s architecture-aware messaging proves

particularly valuable for heterogeneous systems, where it

automatically adapts transaction granularity between scalar

cores and vector accelerators. However, challenges remain

in formal verification of message protocols and support for

distributed chiplets. Future work will integrate RISC-V

CoreSight trace capabilities to enable cross-domain

debugging and expand the interface generator to support

emerging languages like Rust. These enhancements aim to

establish VeriBridge as a foundational layer for next-

generation co-design ecosystems, ultimately accelerating

RISC-V adoption through improved verification agility.

References

[1] Siemens EDA. 2020. 2020 Wilson Research Group

functional verification study.

https://resources.sw.siemens.com/en- US/white- paper-

2020- wilson- researchgroup- functional- verification-

study- ic- asic- fucntional- verification- trendreport.

Online.

[2] A2023. IEEE Standard for SystemVerilog – Unified

Hardware Design, Specification, and Verification

Language. https://standards.ieee.org/standard/1800-

2023.html.

[3] Juan Francesconi, J Agustin Rodriguez, and Pedro M

Julian. 2014. UVM based testbench architecture for unit

verification. In 2014 Argentine Conference on Micro-

Nanoelectronics, Technology and Applications (EAMTA).

IEEE, 89–94.

