Software-Hardware Co-\/erification for Traditional

\ertfication Frameworks
Fangyuan Song!~, Yunlong xiel, Jincheng Liul

1 Institute of Computing Technology, Chinese Academy of Sciences

Abstract

Chip verification iIs a critical phase In the design process, constitutes up to 70% of the total development cycle. To meet escalating computational demands and diversifying
application scenarios, agile design methodologies and high-level abstraction languages have substantially improved design efficiency; however, verification efficiency has
lagged behind. While high-level languages (HLLSs) offer novel approaches through their concise syntax and rich ecosystems, traditional hardware description language (HDL)-
based verification frameworks remain dominant, leading to challenges such as incompatibility between frameworks like Cocotb and legacy verification IPs, insufficient
standardized multi-language support for cross-language calls (e.g., Python), and exacerbated co-verification complexity due to fundamental disparities in software-hardware
programming paradigms. This study introduces T-SHCV, the first multi-language software-hardware co-verification framework, which addresses these challenges through
hardware-friendly communication protocols for efficient cross-language data transmission, software-interface-based hardware abstraction enabling software-driven control of
traditional hardware verification frameworks, and software-package-based extensions providing unified programming interfaces for diverse languages. Experimental results
demonstrate that T-SHCV maintains performance comparable to DPI-C while reducing connection code requirements by 86% for multi-language reference model integration,
thus bridging traditional verification environments with modern software toolchains and establishing a new co-verification paradigm.

INTRODUCTION

Motivation & Challenge

1. Bridging Software and Hardware Verification

- By integrating software-driven verification methodologies to overcome the constraints
of traditional hardware validation, we achieve exponential improvements in verification
efficiency.

| i
‘ pytest
UV M ?
‘ < ¢ > JUnit
O pytorch
Traditional Verification Software Eco|09y
Challenge 1 Challenge 2 Challenge 3
Fundamental disparities in Legacy integration methods rely on Language-specific interface
programming create bidirectional cumbersome signal-level implementations require disparate
communication barriers. operations rather than modern adapters for each HLL-HDL pairing,
transaction increasing maintenance overhead.
Software Hardware) .
@ { HDL /—>\(\C/C++ bridgejz—f HDL
bridge detail
g I | |
e

 —> | ctypes/CFFI = —> Python

type Mapping

Serial Parallel
sequential execution Clock Cycle based execution

NI - Java

Method Overview

Software-Hardware Co-Verification for Traditional Verification Frameworks

1. We propose a hardware-optimized message-passing architecture enabling software-
driven hardware verification, systematically encapsulated into a unified framework with
automated multi-language binding generation

I
I
Pyth

[oL | EMRBER 7T TTT oo oooommosssssommoosos : ::> yinen
J | '

! ! : Java
: [HE] [IRHERE] [ﬁ;&ftzﬂftr] Lo
I
EUIIHER K > o

S N R R : ||:{> C++
__ :

v

Y

» IS/ E

A RIS (ES T
g J N\ J

A

> IX T BRI X

Method

we developed a new Socket
type to establish a data path
between software tools and
hardware frameworks.

One of the key innovations of our work is the decision to \
drive traditional hardware through software

ERAEHRAT RS 8]

B {h BR8]

mmEm |

We compiling hardware designs into dynamic libraries and \
encapsulating them as software packages.

IIFAEZS IIFAEZR RIS e —> hiF > e

e e —

UVMC:k 4 ASBLER > FHBE(C++) N BEE

T R

AL pg s RV EY/Director HLL¥EO
_‘__—-_-__.__.__'_,_-—'_'__.—-—'—‘—-—

[Jsmsst [gt [st [s

Future work

Traditional UVM-based verification requires specialized
expertise in SystemVerilog, creating a barrier for software
engineers who could otherwise contribute valuable test
scenarios. By encapsulating UVM within a software-
accessible package, our approach allows: Software teams
to develop and contribute test scenarios without in-depth
UVM knowledge. Al-driven verification where machine
learning models can generate and optimize test cases
dynamically. 1
Cross-domain collaboration, enabling both hardware and
software engineers to work within a unified verification
environment.

