
1

This study was supported by Bezmialem Vakıf University BAP (Project No:11.2018/16) .

Software-Hardware Co-Verification for Traditional 

Verification Frameworks
Fangyuan Song1,*, Yunlong xie1, Jincheng Liu1

1 Institute of Computing Technology, Chinese Academy of Sciences

Chip verification is a critical phase in the design process, constitutes up to 70% of the total development cycle. To meet escalating computational demands and diversifying
application scenarios, agile design methodologies and high-level abstraction languages have substantially improved design efficiency; however, verification efficiency has
lagged behind. While high-level languages (HLLs) offer novel approaches through their concise syntax and rich ecosystems, traditional hardware description language (HDL)-
based verification frameworks remain dominant, leading to challenges such as incompatibility between frameworks like Cocotb and legacy verification IPs, insufficient
standardized multi-language support for cross-language calls (e.g., Python), and exacerbated co-verification complexity due to fundamental disparities in software-hardware
programming paradigms. This study introduces T-SHCV, the first multi-language software-hardware co-verification framework, which addresses these challenges through
hardware-friendly communication protocols for efficient cross-language data transmission, software-interface-based hardware abstraction enabling software-driven control of
traditional hardware verification frameworks, and software-package-based extensions providing unified programming interfaces for diverse languages. Experimental results
demonstrate that T-SHCV maintains performance comparable to DPI-C while reducing connection code requirements by 86% for multi-language reference model integration,
thus bridging traditional verification environments with modern software toolchains and establishing a new co-verification paradigm.

MATERIALS & METHODS

Challenge 1 Challenge 3Challenge 2

INTRODUCTION

?

Traditional Verification Software Ecology

pytorch

Motivation & Challenge
1. Bridging Software and Hardware Verification
- By integrating software-driven verification methodologies to overcome the constraints 

of traditional hardware validation, we achieve exponential improvements in verification 

efficiency.

Software-Hardware Co-Verification for Traditional Verification Frameworks
1. We propose a hardware-optimized message-passing architecture enabling software-
driven hardware verification, systematically encapsulated into a unified framework with 
automated multi-language binding generation

Method

we developed a new Socket 

type to establish a data path 

between software tools and 

hardware frameworks. 

One of the key innovations of our work is the decision to 

drive traditional hardware through software

We compiling hardware designs into dynamic libraries and 

encapsulating them as software packages.

Future work
Traditional UVM-based verification requires specialized

expertise in SystemVerilog, creating a barrier for software

engineers who could otherwise contribute valuable test

scenarios. By encapsulating UVM within a software-

accessible package, our approach allows: Software teams

to develop and contribute test scenarios without in-depth

UVM knowledge. AI-driven verification where machine

learning models can generate and optimize test cases

dynamically.

Cross-domain collaboration, enabling both hardware and

software engineers to work within a unified verification

environment.

.

Fundamental disparities in 
programming create bidirectional 
communication barriers.

Legacy integration methods rely on 
cumbersome signal-level 
operations rather than modern 
transaction

Language-specific interface 
implementations require disparate 
adapters for each HLL-HDL pairing, 
increasing maintenance overhead.

Method Overview

Abstract


