

RISC-V Summit Europe, Paris, 12-15th May 2025 1

Unleashing the Power of RISC-V E-Trace with a Highly

Efficient Software Decoder
Marcel Zak1, *, Mat O’Donnell1 and Vivek Chickermane2

1Tessent Embedded Analytics, Siemens EDA, UK
2Tessent Embedded Analytics, Siemens EDA, USA

* Corresponding author: marcel.zak@siemens.com

Abstract

Debugging program misbehaviour that impacts large scale deployment of highly connected systems requires

a robust debug infrastructure to monitor the instructions, data, and transactions between system components.

The rapid adoption of RISC-V processors in mission critical applications has compelled system designers to rely

on embedded trace monitors based on the RISC-V E-Trace specification to collect instruction trace data to

analyse the trajectory of the transactions involving the CPU, memory, I/Os, peripherals, and other sub-systems.

In this paper we describe a highly efficient software E-Trace Decoder that allows trace data to be non-intrusively

captured at-speed. We describe two case studies to highlight the power of this implementation and provide

quantitative data to show the efficiency of this implementation.

Introduction

A key requirement for deploying RISC-V based

architectures in mission critical applications is the ability to

quickly isolate program misbehaviour due to software bugs,

and latent silicon defects. For new and unproven

architectures there are additional areas of concern such as

efficiency of multi-threading, cache coherence, branch

prediction, I/O throughput, asynchronous HW/SW

interfaces, concurrency impacts, etc. An embedded trace

encoder that complies with the RISC-V E-Trace

specification [1] provides real-time capture of the

instructions being executed by the RISC-V processor that

can be combined with other monitoring data to provide a

comprehensive system debug functionality.

The term trace is defined as the non-intrusive monitoring

of an application’s execution so that the trajectory of the

program execution can be tracked over time. It provides the

ability to quickly and robustly isolate the exact sequence of

events and data updates that led to a functional failure. It can

be coupled with other procedures such as run-control (stop-

and-go debug), code coverage analysis, reverse debuggers,

and quality assurance tools. Trace is particularly valuable

when the errors are infrequent and irregular such as those

triggered by latent hardware defects.

Figure 1 shows a generic working principle of an

embedded trace system such as described in [1]. The

embedded trace encoder monitors instructions and data. Due

to the vast amount of data that is generated, instruction trace

data is only encoded and stored when the trace is triggered.

It only logs the starting address and whether a branch -

jumps, calls, returns, interrupts, exceptions etc., - is taken or

not. Sequentially executed instructions are not reported as

these can be easily inferred offline.

Program counter addresses that cannot be inferred such as

asynchronous interrupts, exceptions, and indirect jumps

require the trace encoder to report the destination address in

full. The ability to trace at-speed, set filtering criteria and

achieve very high compression ratios enables lossless trace

in most use cases.

Figure 1: Example Instruction Trace

Trace data can be transported off-chip via dedicated high-

speed parallel or serial interfaces or using functional

interfaces such as PCIe or USB. In other cases, the trace

data may be stored on-chip using a circular buffer built

using high-performance memory arrays and unloaded to

off-chip storage systems when needed.

Offloaded data can be processed by a software Trace

Decoder in batch mode on a huge trace data file (terabytes

or higher) or by the real-time processing of the trace packet

messages coming off a high-speed I/O and extracting the

time-stamped trace data. The decoded trace data can be

visualized in real time or stored in a time-series database that

feeds an AI/ML trace data analytics engine. In a closed loop

real time system, the analytics may steer the trace monitor to

log specific events or filter out what is unneeded. A robust

system monitoring solution is designed to concurrently

gather data from silicon sensors that track process, voltage

and temperature (PVT), slack monitors, in-system test

comparators and other instruments to detect anomalous

RISC-V Summit Europe, Paris, 12-15th May 2025 2

behaviour such as irregular and infrequent functional

failures or performance faults. The trace capability is an

essential part of the forensic debug toolkit required to root-

cause the erratic failures and take corrective action before

the failure becomes permanent and leads to catastrophic

errors.

Software Trace Decoder

The key features of the RISC-V software trace decoder that

we have implemented are described in this section.

Additional details will be provided in the final presentation.

• Speed of Decoding: In the worst-case E-Trace only

encodes 1 bit per executed branch leading to an average

compaction of .141 bits per instruction, so the decoder

must be able to unravel this highly optimized bit-stream

by juxtaposing against the addresses in the ELF file.

• Support for tracing custom instructions with E-

Trace Optional Extensions: A key feature of the

RISC-V ISA is the support for custom instructions,

making it essential to trace them. This task is more

challenging with E-Trace optional extensions, requiring

the decoding algorithm to support user-supplied

instruction specifications.

• Filters for Processor Trace: To reduce the volume of

trace data, we support easy-to-use filters to limit the

amount of processor trace data. Modern processors can

execute multiple instructions every clock cycle, so this

helps reduce the trace data that is collected.

• Integration Capabilities: The Trace Decoder is a part

of an SDK that can communicate with simulation

environments, FPGA prototypes, and real hardware.

• Supported Extensions: Many RISC-V extensions such

as RV32/RV64 IMAFDCV are supported by our

instruction trace decoder.

• Implicit Return Feature: This instruction is highly

prevalent in compiled code and requires some complex

algorithmic support to correctly interpret the program

trajectory.

• API for Processor Trace Module: To enable debug

architects to access the details of the trace data it is

coupled with a high-level abstraction layer and

Asynchronous Python API. In the final presentation this

will be illustrated with code snippets to explain how

trace data is received. It includes not just a list of PC

addresses but also traps, cycle accurate groups, and

trace lost events. Users can easily determine the exact

position of traps and pinpoint when trace loss occurs.

• Impact of Optional Extensions on Decoding Speed:

E-Trace offers many optional extensions that can make

the encoded payload smaller (better compression) but

require the decoder to do more work to reconstruct the

execution flow with the benefit of significant

compaction. Examples include:

i. Sequentially inferable jump mode: Use the

combination of consecutive instruction as an inferable

jump address, e.g., LUIPC + JALR.

ii. Implicit return mode: Maintain stack of expected

function return addresses, and do not report if return is

as expected.

iii. Branch Prediction mode: Reports the number of

correctly predicted branches before a mis-prediction.

Benefits programs with lots of loops, in some cases

dramatically by orders of magnitude.

iv. Jump Target Cache mode: Cache indirect jump target

addresses and report index rather than target address.

Results and Case Studies

The RISC-V Trace Decoder has been implemented and

tested using the Embench™ Benchmark programs with

instructions counts ranging from 1.03 to 7.7 million. The

compression results range from 0.38 bits per instruction

(BPI) to 0.0007 BPI in the best case with the average at 0.14

BPI. The total trace payload size for the benchmark varies

from 127.55 down to 0.34 KiB in the best case. With the use

of optional extensions in the trace encoder the BPI can be

reduced by an average of 38.18% highlighting the benefits

of the extensions. Detailed results will be published in the

final version.

 The benefits of using RISC-V E-Trace with a highly

efficient decoder can be seen from two real world case

studies. The first case study [4] is a hard drive SoC where a

RISC-V processor executes real time programs to position

the head within a 2.4 nm accuracy by using disturbance

detection filters and adaptive control algorithms to guard

against vibrations. The trace features allow the engineers to

debug the algorithms, improve parallelism and reduce

latency.

 The second case study [5] proposes integrating RISC-V

trace with Silicon Lifecycle Monitoring applications for

continuous monitoring of program behaviour to help identify

the root cause of silent data corruption, irregular and

frequent errors, and under-performance during its functional

lifetime. Time stamped trace data can be aligned with other

silicon health monitoring sensors and built-in self-test of

logic and memories.

References

[1] G. Panesar and I. Robertson, “Efficient Trace for RISC-V,”

Siemens, ver. 1.1.3-Frozen, Mar. 23, 2022. [Online]. Available:

https://github.com/riscv-non-isa/riscv-trace-spec/blob/main/riscv-

trace-spec.pdf

[2] “Embedded Trace Macrocell Architecture Specification,”

ARM, ver. H, Nov. 2020.

[3] “Real Time Instruction Trace,” Intel, ver. 1.05, Dec. 2015.

[4] R. Bohm, “Debug & Optimization Strategy in Tomorrow’s

Storage Technology,” Seagate Technologies, Siemens U2U

Presentation, Available: https://eda.sw.siemens.com/en-

US/ic/tessent/embedded-analytics/

[5] V. Chickermane, M. Zak, and M O’Donnell, “Embedded

Trace: A Key Enabler for Silicon Debug and Continuous

Monitoring,” Poster PO.42, IEEE Int Test Conference, Nov 2024

https://github.com/riscv-non-isa/riscv-trace-spec/blob/main/riscv-trace-spec.pdf
https://github.com/riscv-non-isa/riscv-trace-spec/blob/main/riscv-trace-spec.pdf
https://eda.sw.siemens.com/en-US/ic/tessent/embedded-analytics/
https://eda.sw.siemens.com/en-US/ic/tessent/embedded-analytics/

