
 

RISC-V Summit Europe, Paris, 12-15th May 2025  1 

 

Unleashing the Power of RISC-V E-Trace with a Highly 

Efficient Software Decoder
Marcel Zak1, *, Mat O’Donnell1 and Vivek Chickermane2 

1Tessent Embedded Analytics, Siemens EDA, UK 
2Tessent Embedded Analytics, Siemens EDA, USA                                                                                                                                                

* Corresponding author: marcel.zak@siemens.com 

Abstract 

Debugging program misbehaviour that impacts large scale deployment of highly connected systems requires 

a robust debug infrastructure to monitor the instructions, data, and transactions between system components. 

The rapid adoption of RISC-V processors in mission critical applications has compelled system designers to rely 

on embedded trace monitors based on the RISC-V E-Trace specification to collect instruction trace data to 

analyse the trajectory of the transactions involving the CPU, memory, I/Os, peripherals, and other sub-systems.  

In this paper we describe a highly efficient software E-Trace Decoder that allows trace data to be non-intrusively 

captured at-speed. We describe two case studies to highlight the power of this implementation and provide 

quantitative data to show the efficiency of this implementation.

Introduction 

A key requirement for deploying RISC-V based 

architectures in mission critical applications is the ability to 

quickly isolate program misbehaviour due to software bugs, 

and latent silicon defects. For new and unproven 

architectures there are additional areas of concern such as 

efficiency of multi-threading, cache coherence, branch 

prediction, I/O throughput, asynchronous HW/SW 

interfaces, concurrency impacts, etc. An embedded trace 

encoder that complies with the RISC-V E-Trace 

specification [1] provides real-time capture of the 

instructions being executed by the RISC-V processor that 

can be combined with other monitoring data to provide a 

comprehensive system debug functionality. 

The term trace is defined as the non-intrusive monitoring 

of an application’s execution so that the trajectory of the 

program execution can be tracked over time. It provides the 

ability to quickly and robustly isolate the exact sequence of 

events and data updates that led to a functional failure. It can 

be coupled with other procedures such as run-control (stop-

and-go debug), code coverage analysis, reverse debuggers, 

and quality assurance tools. Trace is particularly valuable 

when the errors are infrequent and irregular such as those 

triggered by latent hardware defects. 

Figure 1 shows a generic working principle of an 

embedded trace system such as described in [1]. The 

embedded trace encoder monitors instructions and data. Due 

to the vast amount of data that is generated, instruction trace 

data is only encoded and stored when the trace is triggered. 

It only logs the starting address and whether a branch - 

jumps, calls, returns, interrupts, exceptions etc., - is taken or 

not. Sequentially executed instructions are not reported as 

these can be easily inferred offline. 

Program counter addresses that cannot be inferred such as 

asynchronous interrupts, exceptions, and indirect jumps 

require the trace encoder to report the destination address in 

full. The ability to trace at-speed, set filtering criteria and 

achieve very high compression ratios enables lossless trace 

in most use cases. 

 
Figure 1: Example Instruction Trace 

 

Trace data can be transported off-chip via dedicated high-

speed parallel or serial interfaces or using functional 

interfaces such as PCIe or USB. In other cases, the trace 

data may be stored on-chip using a circular buffer built 

using high-performance memory arrays and unloaded to 

off-chip storage systems when needed. 

Offloaded data can be processed by a software Trace 

Decoder in batch mode on a huge trace data file (terabytes 

or higher) or by the real-time processing of the trace packet 

messages coming off a high-speed I/O and extracting the 

time-stamped trace data. The decoded trace data can be 

visualized in real time or stored in a time-series database that 

feeds an AI/ML trace data analytics engine. In a closed loop 

real time system, the analytics may steer the trace monitor to 

log specific events or filter out what is unneeded. A robust 

system monitoring solution is designed to concurrently 

gather data from silicon sensors that track process, voltage 

and temperature (PVT), slack monitors, in-system test 

comparators and other instruments to detect anomalous 
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behaviour such as irregular and infrequent functional 

failures or performance faults. The trace capability is an 

essential part of the forensic debug toolkit required to root-

cause the erratic failures and take corrective action before 

the failure becomes permanent and leads to catastrophic 

errors. 

Software Trace Decoder 

The key features of the RISC-V software trace decoder that 

we have implemented are described in this section. 

Additional details will be provided in the final presentation. 

• Speed of Decoding: In the worst-case E-Trace only 

encodes 1 bit per executed branch leading to an average 

compaction of .141 bits per instruction, so the decoder 

must be able to unravel this highly optimized bit-stream 

by juxtaposing against the addresses in the ELF file.  

• Support for tracing custom instructions with E-

Trace Optional Extensions: A key feature of the 

RISC-V ISA is the support for custom instructions, 

making it essential to trace them. This task is more 

challenging with E-Trace optional extensions, requiring 

the decoding algorithm to support user-supplied 

instruction specifications. 

• Filters for Processor Trace: To reduce the volume of 

trace data, we support easy-to-use filters to limit the 

amount of processor trace data. Modern processors can 

execute multiple instructions every clock cycle, so this 

helps reduce the trace data that is collected. 

• Integration Capabilities: The Trace Decoder is a part 

of an SDK that can communicate with simulation 

environments, FPGA prototypes, and real hardware.  

• Supported Extensions: Many RISC-V extensions such 

as RV32/RV64 IMAFDCV are supported by our 

instruction trace decoder. 

• Implicit Return Feature: This instruction is highly 

prevalent in compiled code and requires some complex 

algorithmic support to correctly interpret the program 

trajectory. 

• API for Processor Trace Module: To enable debug 

architects to access the details of the trace data it is 

coupled with a high-level abstraction layer and 

Asynchronous Python API. In the final presentation this 

will be illustrated with code snippets to explain how 

trace data is received. It includes not just a list of PC 

addresses but also traps, cycle accurate groups, and 

trace lost events. Users can easily determine the exact 

position of traps and pinpoint when trace loss occurs.  

• Impact of Optional Extensions on Decoding Speed: 

E-Trace offers many optional extensions that can make 

the encoded payload smaller (better compression) but 

require the decoder to do more work to reconstruct the 

execution flow with the benefit of significant 

compaction. Examples include:  

i. Sequentially inferable jump mode: Use the 

combination of consecutive instruction as an inferable 

jump address, e.g., LUIPC + JALR. 

ii. Implicit return mode: Maintain stack of expected 

function return addresses, and do not report if return is 

as expected.  

iii. Branch Prediction mode: Reports the number of 

correctly predicted branches before a mis-prediction. 

Benefits programs with lots of loops, in some cases 

dramatically by orders of magnitude. 

iv. Jump Target Cache mode: Cache indirect jump target 

addresses and report index rather than target address. 

 

Results and Case Studies 

 
The RISC-V Trace Decoder has been implemented and 

tested using the Embench™ Benchmark programs with 

instructions counts ranging from 1.03 to 7.7 million. The 

compression results range from 0.38 bits per instruction 

(BPI) to 0.0007 BPI in the best case with the average at 0.14 

BPI. The total trace payload size for the benchmark varies 

from 127.55 down to 0.34 KiB in the best case. With the use 

of optional extensions in the trace encoder the BPI can be 

reduced by an average of 38.18% highlighting the benefits 

of the extensions. Detailed results will be published in the 

final version. 

  The benefits of using RISC-V E-Trace with a highly 

efficient decoder can be seen from two real world case 

studies. The first case study [4] is a hard drive SoC where a 

RISC-V processor executes real time programs to position 

the head within a 2.4 nm accuracy by using disturbance 

detection filters and adaptive control algorithms to guard 

against vibrations. The trace features allow the engineers to 

debug the algorithms, improve parallelism and reduce 

latency. 

  The second case study [5] proposes integrating RISC-V 

trace with Silicon Lifecycle Monitoring applications for 

continuous monitoring of program behaviour to help identify 

the root cause of silent data corruption, irregular and 

frequent errors, and under-performance during its functional 

lifetime. Time stamped trace data can be aligned with other 

silicon health monitoring sensors and built-in self-test of 

logic and memories. 

References 

[1] G. Panesar and I. Robertson, “Efficient Trace for RISC-V,” 

Siemens, ver. 1.1.3-Frozen, Mar. 23, 2022. [Online]. Available: 

https://github.com/riscv-non-isa/riscv-trace-spec/blob/main/riscv-

trace-spec.pdf 

[2] “Embedded Trace Macrocell Architecture Specification,” 

ARM, ver. H, Nov. 2020. 

[3] “Real Time Instruction Trace,” Intel, ver. 1.05, Dec. 2015. 

[4] R. Bohm, “Debug & Optimization Strategy in Tomorrow’s 

Storage Technology,” Seagate Technologies, Siemens U2U 

Presentation, Available: https://eda.sw.siemens.com/en-

US/ic/tessent/embedded-analytics/ 

[5] V. Chickermane, M. Zak, and M O’Donnell, “Embedded 

Trace: A Key Enabler for Silicon Debug and Continuous 

Monitoring,” Poster PO.42, IEEE Int Test Conference, Nov 2024 

https://github.com/riscv-non-isa/riscv-trace-spec/blob/main/riscv-trace-spec.pdf
https://github.com/riscv-non-isa/riscv-trace-spec/blob/main/riscv-trace-spec.pdf
https://eda.sw.siemens.com/en-US/ic/tessent/embedded-analytics/
https://eda.sw.siemens.com/en-US/ic/tessent/embedded-analytics/

