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Abstract

In order to truly benefit from RISC-V ISA modularity, the community has to address the issue of compositionality,
going beyond modules at the specification level covering larger subsets of the RISC-V development flow including
emulation, simulation and verification. In this paper we introduce modular SAIL, an experiment to inject
compositionality into the SAIL-RISCV golden model. We show that it is, in principle, not difficult to adapt the
SAIL-RISCYV flow (and ideally the SAIL compiler itself) to support modules at the emulator level. We back our
findings by a comparative study of the resulting pluggable emulator’s performance using both static and dynamic
binding, which both exhibit same functional behaviour as the original monolithic emulator (aka RISC-V [ISS]).

Introduction and related work

The benefits of open ISAs (e.g.,, RISC-
V, [OpenPOWER]|) and free CPUs (e.g.
[OpenSPARC]) are well known [1]. RISC-V,

on paper, has an additional bonus of offering a
modular ISA: the implementers, tool providers as well
as their users can freely agree on the set of extensions
that need to be cast to HW and supported by SW.
With the advent of co-processor interfaces such as
OVI [2] and XIF [3], an ecosystem of extension IP
vendors becomes imaginable. From standardization
perspective, initiatives like CX [4] do promote this
path, by pushing the interface to the ISA level.
Many of these alternatives come with different trade-
offs. This can be for example in the level of SW /tooling
support they require. Or the necessity of low-level
assembly programming with intrinsics vs. the need
to adjust the microarchitecture of the core’s pipeline.
Nevertheless they do share one crucial requirement -
modularity of spec, design, testing and verification.
In order to truly enable such an ecosystem, the RISC-
V community would address the compositionality not
only of the RISC-V specification itself, but also of all
ensuing artefacts: (1) emulators, (2) simulators, (3)
test-benches, (4) compiler extensions, (5) the OS and
(6) runtime libraries and middleware. While the ISA
itself is open, it is unlikely that many players in the eco-
system will opt for open-sourcing their actual extension
IP designs. With the rapid increase of the number of
extensions for various kinds of accelerators for RVV,
ML/AI and Crypto (and well as the number of their
HW tapeouts) the modularity and compositionality of
RISC-V extensions is expected to become more and
more critical to the success of RISC-V community as a
whole. In this paper we focus on the first and the most
crucial artefact: the SAIL-generated riscv_sim_RV64
emulator [5]. As SAIL-RISCV |[6] is selected for the
role of the golden model, it provides the ultimate source
of truth with which further artefacts are measured.
This includes, for example, the Spike simulator [7],
[RVFI] tools, [gcce] & [LLVM] compiler toolchains.
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By modularizing the riscv_sim_RV64 we aim for:

minimizing cross-module dependencies

binary plug-ability of extension modules
dynamic binding of the RISC-V ISA extensions
wide coverage of important [HPC] extensions: M,
V, P (draft), B and Crypto (K in this paper)
5. minimal changes to the compiler and golden model

Ll

CBI [8] provides a fine-grained support for introduc-
ing individual instructions to a range of their cores
using a proprietary Studio Fusion tool. New FUs
introduced are isolated from the base core pipeline,
however, the behaviour needs to be described to the
toolchain at a high-level which then generates a full
RTL for the complete core (as well as the required SW
tools). OVI [2] from [BSC] and Semidynamics offers
a custom signaling interface that allows a base core to
offload some specific instructions to an IP coming from
a separate entity. XIF [3] from [OpenHW] follows a
more compositional approach whereby a base core de-
coder filters instruction stream and forwards unknown
opcodes to a co-processor which then interfaces with
the LSU and the RF. To our knowledge, in all three
approaches the verification needed before and after
RTL synthesis is still performed on the whole design.

Methodology
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Figure 1: Proposed changes to the SAIL flow

In our experiment, most significant changes were
introduced in the Makefile of the model. As can
be seen in Fig.1, instead of producing a single whole-
program-processed emulator Fig.1a, we are segregating


mailto:peter.kourzanov@imec.be

large extensions from each other (and from most of
the base core instructions and architectural state) in
Fig.1b. Once this was found to be working, we enabled
dynamic binding as in Fig.1c. For our aims, in this
experiment, we are post-processing the generated C
emulator(s) for each extension module automatically
by a custom script, addressing the compositionality
aspects with the help of the following transformations:

e prefixing and externalizing symbols of the mod-
ule API: zdecode, zprint_insn, zexecute,
{CREATE,KILL}(zast) and model_{init,fini}

e prefixing and relocation of data-structure decla-
rations from the generated C file to a H file

e making extern the (shared) architectural state, as
most registers are in the base for our experiment

e making static incidental definitions and helpers
which might get duplicated by current approach

e removal of (de)initialization of the (shared) excep-
tion handling and run-time system mechanisms

Implementation and Results

In effect, each module obtains a well-defined API for
performing the decode-print-execute loop and for com-
mitting the results to the RF. While each generated
C emulator has all the features to run just the in-
structions provided by the given ISA descriptions, it
obviously lacks the base instructions and hence can
not be run in isolation from the base emulator - which
provides the system context, load/store, exception and
architectural state management such as CSRs.

To integrate these extensions back into the base
emulator, we have applied a simple patch that adds
required calls to respective functions in zstep and
model_init of the base emulator.! In this paper,
static or dynamic bindings are inserted verbatim in
the source code as an example. A version with fully
dynamic loading of extensions parameterized from
command-line is published at our [9] github repository.

To see the effect of modularization and dynamic
binding on emulator performance we have performed
a series of runs for each of the base, M, and V test-
benches on a dedicated Xeon(R) w5-2455X system
running at 3.2Ghz.

The impact on binaries (text+datat+bss) for the
orig, base, static/dynamic is on Fig.2b. We can observe
that changes (with M, B, K, P & V) do not lead to
excessive size expansion and that [LTO] is effective.

Conclusions and future work

In this paper we have shown that SAIL modularization
is a promising path for improving compositionality of
RISC-V designs and their ISAs. Addressing this is of
paramount importance as systems grow in complexity
and variation, and our work makes first steps in this
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Figure 2: Performance study results

direction for RISC-V ISA emulators. Vendors can
now exchange dynamic libraries instead of patches to
the golden model, and keep internals concealed (when
necessary) while relying on their partners to deliver
well-tested, verified and validated extension modules.

We intend to improve upon the current version of
modular SAIL by extending the loader to perform
ondemand loading of extensions, in addition to pro-
visions for certifying used dynamic libraries at load
time. Extending this work to cover more extensions,
primarily F & D as modules and solving the problem
of modular inheritance of e.g., floating-point and/or
vector features in other extensions such as Vector-
Crypto would be an interesting followup. Another
promising direction is to apply Al & ML techniques to
automatically instantiate required modules provided
a user-friendly description, trained on the published
RISC-V specs. We hope that our findings will be help-
ful in adapting tools such as SAIL compiler to produce
more modular and compositional extension modules.
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