
Modular SAIL: dream or reality?

Petr Kourzanov, Anmol Anmol

INTRODUCTION

Know more about us:

Imec DSRD Compute Systems Architecture (CSA)
Kapeldreef 75, 3001 Leuven, Belgium. {first}.{last}@imec.be

z

IMPLEMENTATION

Fig 2: Impact of changes on binaries

Fig 3: Performance of adapted SAIL flow

REFERENCESCONCLUSION AND FUTURE WORK

METHODOLOGY

Fig 1: Proposed changes to the baseline SAIL flow (0): Static M (1), Semi-Dynamic M & V (2)

EXPERIMENTAL RESULTS

z z

Unlocking the Full Potential of RISC-V ISA
Modularity: Addressing Compositionality
Challenge: To fully benefit from RISC-V ISA
modularity, the community must address
compositionality. This involves extending
beyond module specifications. It encompasses
broader aspects of the RISC-V development
flow, including emulation, simulation, testing
and verification.
Our Proposal: Modular SAIL
- An approach to infuse compositionality into

the SAIL-RISCV golden model.
- Feasibility: We demonstrate that it is

possible to adapt the flow (and in future, the
SAIL compiler itself) to support modules at
the emulator level.

- Results: Comparative study of the pluggable
emulator’s overheads

• for both static and dynamic bindings
• Same functional behavior as the original

monolithic emulator (RISC-V ISS)

[1] Andrew Waterman, “The RISC-V instruction set”.
https://doi.org/10.1109/HOTCHIPS.2013.7478332
[2] Open Vector Iface. https://shorturl.at/ulFa9
[3] CORE-V-XIF. https://shorturl.at/egnAV
[4] CX Proposal. https://shorturl.at/ufIGF
[5] SAIL. https://github.com/rems-project/sail
[6] Model. https://github.com/riscv/sail-riscv
[7] Spike RISC-V ISS. https://shorturl.at/OOBlf
[8] CBI from Codasip. https://shorturl.at/X61Kj
[9] Evaluating a RISC-V processor running Benchmarks using the
QEMU VP: https://shorturl.at/aF11p

Artefacts:

Our methodology centers on transforming a monolithic SAIL-RISCV emulator into a modular design that
enhances compositionality and facilitates both static and dynamic module bindings
Approach: Decompose the original monolithic emulator into a base module and individual extension
modules. This separation allows each extension to expose a well-defined API while relying on a shared
architectural state provided by the base emulator.

Modular variants on top of (0) Baseline LTO: (1) Statically linked static binding, (2) Statically linked (semi-
) Dynamic binding, and (3) Runtime-linked Dynamic binding (see IMPLEMENTATION)

This experiment validates that:
1. injecting compositionality into the SAIL-RISCV flow is not only feasible but also

advantageous for the evolving RISC-V ecosystem
2. By decoupling extensions from the base emulator, vendors can independently

develop and exchange dynamic libraries without exposing proprietary details
3. thereby fostering a more open, collaborative and secure environment.
This modularization strategy paves the way for future enhancements, such as
• on-demand loading and runtime certification of extension modules
• supporting further extensions as modules, including floating-point F, D as well as

VectorCrypto or the upcoming IME/AME/AI enhancements

We believe that this work represents a significant step toward creating a scalable,
adaptable, and compositional framework that meets the growing complexity of modern
RISC-V designs.

Fig 4: Proposed SAIL flow changes for the Fully-Dynamic M (3)

• Each module in our system provides a clear API for querying, initializing,
decoding, executing, and pretty-printing instructions. These module emulators
support only the instructions from their defined ISA extensions and rely on the
base emulator module for e.g., RF, system context and LSU

• Integration is done through simple patch that adds required calls to respective
functions in zstep() and model_init() of the base emulator.

• Statically linked static and dynamic bindings are inserted directly into the code
for the Static case (1) and Semi-Dynamic case (2)

We evaluated the performance of the pluggable emulator using static, and dynamic bindings
• Our performance evaluation on dedicated Xeon systems demonstrates that both static and

dynamic binding techniques preserve the functional behavior of the original monolithic SAIL-
RISCV emulator, and that the performance is in many cases improved

• The modular approach incurs no excessive binary size overheads. While the baseline LTO is still
the most code size-efficient solution the segregation of base model and extension models into
modules with static- or dynamic binding does not compromise code size.

• Furthermore, by enabling
isolated testing of both the
base core and individual
extension modules, our
approach improves testing
and debugging processes,
ensuring that each
component can be verified
independently before
integration.

• For Fully-Dynamic (case 3) extension
loading is parameterized from cmdline

• Only used modules are loaded & invoked
for execution of the RISC-V ISS

• Insertion of extension API calls is
performed via an simulator indirection

• Results are positive:
1. Less cache pressure
2. Less branching
➔

Faster overall execution☺

https://doi.org/10.1109/HOTCHIPS.2013.7478332
https://shorturl.at/ulFa9
https://shorturl.at/egnAV
https://shorturl.at/ufIGF
https://github.com/rems-project/sail
https://github.com/riscv/sail-riscv
https://shorturl.at/OOBlf
https://shorturl.at/X61Kj
https://shorturl.at/aF11p

