Modular SAIL: dream or reality?

Petr Kourzanov, Anmol Anmol

Imec DSRD Compute Systems Architecture (CSA)
Kapeldreef 75, 3001 Leuven, Belgium. {first}.{last}@imec.be

Artefacts:

Know more about us:

2 auunOE \
| i BN
| I | R
e : m AN "
LU ™ oy " s : :
- ;: ' et TS — | 4 - - .- a
; . L 1 | o | [T A gy a billlib | > u u o
e . i i l‘ll‘rll\ﬂam‘hl.]] . (]
- . . es ‘,‘.w': e | " ¢ Ty . i
‘ A SR A | . U e] @ = ., (T [O "
& < ! Fre Pl | y ' - i 3 lE ot -
i e ko] | | s B - : f . §
. J it i | z my | | R ¥R iy > D T | |
- N iy ik - e I R ks v i i el

Our methodology centers on transforming a monolithic SAIL-RISCV emulator into a modular design that
enhances compositionality and facilitates both static and dynamic module bindings

Unlocking the Full Potential of RISC-V ISA

Modularity: Addressing Compositionality

Challenge: To fully benefit from RISC-V ISA

modularity, the community must address

compositionality. This involves extending
beyond module specifications. It encompasses
broader aspects of the RISC-V development
flow, including emulation, simulation, testing
and verification.

Our Proposal: Modular SAIL

- An approach to infuse compositionality into
the SAIL-RISCV golden model.

- Feasibility: We demonstrate that it is
possible to adapt the flow (and in future, the
SAIL compiler itself) to support modules at
the emulator level.

- Results: Comparative study of the pluggable
emulator’s overheads

* for both static and dynamic bindings

 Same functional behavior as the original

monolithic emulator (RISC-V ISS)

EXPERIMENTAL RESULTS

Approach: Decompose the original monolithic emulator into a base module and individual extension

modules. This separation allows each extension to expose a well-defined APl while relying on a shared
architectural state provided by the base emulator.

Modular variants on top of (0) Baseline LTO: (1) Statically linked static binding, (2) Statically linked (semi-

) Dynamic binding, and (3) Runtime-linked Dynamic binding (see IMPLEMENTATION)
common common common
begin types regs insts end begin types regs insts end be'gin tyies re'gs R insts en‘d
v ' v y ' ’ ' ' ' y ‘ ' base module2 modulel
base ext base module ; s e -
F rvodi M \V F D rv6di M | ‘
I]

\\)4’//

riscv._model RV64.c

riscv_sim RV64

We evaluated the performance of the pluggable emulator using static, and dynamic bindings
~* Our performance evaluation on dedicated Xeon systems demonstrates that both static and
E dynamic binding techniques preserve the functional behavior of the original monolithic SAIL-

; RISCV emulator, and that the performance is in many cases improved
~* The modular approach incurs no excessive binary size overheads. While the baseline LTO is still

the most code size-efficient solution the segregation of base model and extension models into

modules with static- or dynamic binding does not compromise code size.

3. 0=10°

2 0x10°

1_.0= 108

fiio stafic semidyn fulldymn

Fig 2: Impact of changes on binaries

Furthermore, by enabling
isolated testing of both the
base core and individual
extension modules, our
approach improves testing
and debugging processes,

ensuring that each

component can be verified
independently before
integration.

CONCLUSION AND FUTURE WORK

riscv._model RV64.c riscv_model RV64-mext.c

ﬁscv_sim_%
Y Y

riscv_model RV64.0

riscv_model RV64-mext.o

riscv_model RV64.c

riscv_model RV64-vext.c

v

riscv_model RV64-mext.c

Y

- | libriscv_model RV64-vext.so

libriscv_model RV64-mext.so

riscvi-.s im_RV64

A

riscv._model RV64.0

Fig 1: Proposed changes to the baseline SAIL flow (0): Static M (1), Semi-Dynamic M & V (2)

Each module in our system provides a clear APl for querying, initializing,

decoding, executing, and pretty-printing instructions. These module emulators
support only the instructions from their defined ISA extensions and rely on the
base emulator module for e.g., RF, system context and LSU
Integration is done through simple patch that adds required calls to respective
functions in zstep() and model _init() of the base emulator.
Statically linked static and dynamic bindings are inserted directly into the code
for the Static case (1) and Semi-Dynamic case (2)

For Fully-Dynamic (case 3) extension

loading is parameterized from cmdline

oooooo

Only used modules are loaded & invoked

insts

end

for execution of the RISC-V ISS

nsertion of extension API calls is

oerformed via an simulator indirection
Results are positive:

1. Less cache pressure
2. Less branching s

9 riscv._model RV64.s0
Faster overall execution©

v Y ¥ v v
b modulel module2
F D v64i M AY4
T

riscv_sim RV64

Execution with

L

riscv_model RV64-vext.c

-~
~
-~
~

»

libriscv. model RV64-vext.so

libriscv._model RV64-mext.so

Fig 4: Proposed SAIL flow changes for the Fully-Dynamic M (3)

REFERENCES

This experiment validates that: [1] Andrew Waterman, “The RISC-V instruction set”.
1. injecting compositionality into the SAIL-RISCV flow is not only feasible but also nttps://doi.org/10.1109/HOTCHIPS.2013.7478332
advantageous for the evolving RISC-V ecosystem 5 2] Open Vector Iface. https://shorturl.at/ulFa9

2. By decoupling extensions from the base emulator, vendors can independently 3] CORE-V-XIF. https://shorturl.at/egnAV
develop and exchange dynamic libraries without exposing proprietary details 4] CX Proposal. https://shorturl.at/uflGF
3. thereby fostering a more open, collaborative and secure environment. 5] SAIL. https://github.com/rems-project/sail
This modularization strategy paves the way for future enhancements, such as 6] Model. https://github.com/riscv/sail-riscv
 on-demand loading and runtime certification of extension modules 7] Spike RISC-V ISS. https://shorturl.at/OOBIf
e supporting further extensions as modules, including floating-point F, D as well as 8] CBI from Codasip. https://shorturl.at/X61Kj]
VectorCrypto or the upcoming IME/AME/Al enhancements [9

We believe that this work represents a significant step toward creating a scalable,
adaptable, and compositional framework that meets the growing complexity of modern

RISC-V designs.

Evaluating a RISC-V processor running Benchmarks using the
QEMU VP: https://shorturl.at/aF11p

..

https://doi.org/10.1109/HOTCHIPS.2013.7478332
https://shorturl.at/ulFa9
https://shorturl.at/egnAV
https://shorturl.at/ufIGF
https://github.com/rems-project/sail
https://github.com/riscv/sail-riscv
https://shorturl.at/OOBlf
https://shorturl.at/X61Kj
https://shorturl.at/aF11p

