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Abstract

TestRIG is a framework to test RISC-V implementations first presented at the RISC-V Summit in Zurich in
2019. Since then, the ecosystem has grown, with multiple new implementations integrated and industrial interest.
This presentation discusses some improvements to the ecosystem, including mutation-based coverage tooling,
features for generating static test suites, and a single-implementation mode that enables more traditional fuzzing.
The developments are motivated by testing the Toooba processor, including the CHERI security extensions. This
work helps to evolve TestRIG into a tool suite that can increasingly improve assurance in RISC-V designs.

Background

TestRIG is an ecosystem for cross-verifying RISC-V
implementations using a standard RVFI-DII inter-
face [1]. Verification Engines connect to the imple-
mentations over this interface: QuickCheckVEngine
uses Haskell’s QuickCheck library to generate tests
and automatically shrink any divergences to a mini-
mal reproducer. The RISC-V golden Sail model im-
plements RVFI-DII, allowing implementations to be
compared against this (hopefully) correct-by-definition
executable simulator [2]. The RISC-V community is
in the process of standardising a CHERI extension,
adding unforgeable hardware capabilities for memory
safety and compartmentalisation [3]. TestRIG is in use
to test CHERI in the Toooba and CVAG6 processors.
Since initial publication, the TestRIG infrastructure
has seen increasing community engagement, includ-
ing users and contributors from Microsoft Research,
lowRISC, and SCI Semiconductor. The repository now
links to 10 RVFI-DII-extended implementations, and
has several forks from other members of the commu-
nity. Improved support has been added for RISC-V
compressed instructions and other extensions.

Coverage

An important gap in TestRIG so far is a means to
measure the effectiveness of Verification Engines. This
section introduces a tool to automatically measure this
using mutation-based testing.

Coverage measurement is particularly important for
directed random verification, as it is otherwise difficult
to determine the quality of the distribution of tests
produced. Traditional coverage measures properties of
the simulator alone, for example whether certain lines
of code have been run, or certain state configurations
reached. This leaves a gap in assurance: even if code
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function clause execute(SCMODE(cd, csl, rs2)) = {
let cap = C(csl);
let mode = execution mode encdec(X(rs2)[0 .. 0]);

let hasMode = not(permsMalformed(cap)) & canX(cap);
let newCap = if hasMode then setCapMode(cap, mode) else cap;

RETIRE_SUCCESS

Figure 1: Auto-generated report showing the results of
mutation-based testing of a Sail CHERI function by re-
moving lines of Sail code (just one type of mutation out of
several). Blue lines resulted in a model that did not build
when deleted, green shows successful detection (the user can
click to link to the failing test), and red shows a case where
no counterexample was detected. In this case, the user
can see that they need to direct random test generation to
produce more sealed capabilities. Traditional code coverage
would show that this line was run, hiding the blind-spot!

has been run, it may contain bugs that would not
be visible in any of the checked outputs of the test.
For example, Figure 1 shows a case where a CHERI
validity tag gets conditionally cleared: a test may cause
this code to be run, but only on already-untagged
capabilities, or the capability may be used later in the
test, hiding the error.

The Sail model enables us to approach the problem
differently: measuring mutation adequacy [4] of the
TestRIG generators. By introducing artificial bugs into
the Sail model, we can assert that the tests definitely
do catch those types of bugs. The tests will be run
comparing the mutated Sail model against the original,
detecting any divergences in outputs. Due to auto-
matic counterexample shrinking, these divergences can
typically be made very concise. For example, we can
hardcode an if condition to true. Running this under
TestRIG against another unmodified version of the
Sail model confirms that the tests relied on behaviour
where the else was taken. Figure 1 demonstrates the
benefits when verifying a CHERI core.

We have implemented a framework to perform this
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work as scripts within the TestRIG repository. Users
can implement transformations over the Sail model
as Python classes that implement two functions: one
to find points to transform (e.g. each if clause in the
model) and one to perform the transformations (e.g.
replacing the condition with a hard-coded true or
false). The framework then manages performing the
transformations on copies of the Sail model, building
them, and running a Verification Engine. Transfor-
mations and results of runs are tracked in an SQLite
database and can be displayed in HTML to allow easy
visual inspection, as seen in Figure 1. While the scripts
currently use text-based transformations written in
Python, we would ideally hook in to the Sail compiler
to perform transformations on the syntax tree. In-
lining function definitions could also make coverage
measurements more meaningful.

The framework could also be adapted to allow mu-
tations to the RTL of a particular implementation,
testing for microarchitectural coverage rather than
just model coverage [5].

Test suite generation

There is a useful side effect of the above coverage ap-
proach, combined with QuickCheckVEngine’s existing
shrinking mechanism. Since only a single difference is
introduced to the model at a time, the counterexample
produced is very targeted to that line of code. With
counterexample shrinking, this produces a minimal
test case for that line of the architecture, relying on
the minimal features needed to test that behaviour.
Repeating this allows us to build up a library of traces
that test each line of the model. These tests are typ-
ically very short for the types of coverage examined
so far: a single-digit number of instructions, as op-
posed to hundreds required for traditional ISA tests.
This makes it much easier to diagnose a failure. We
conjecture that such tests could form the basis of a
comprehensive architectural compatibility suite.

Debugging lockups

An unrelated TestRIG development was motivated
by bugs in the Toooba processor causing it to lockup
and not retire instructions. This is one of the worst
possible failure modes for a processor, likely requiring
a hardware reset to recover. We discovered Toooba
could lockup by mis-decoding some illegal instructions.

To ensure we had caught all the relevant cases, we
added a mode to TestRIG to allow a single implemen-
tation to be run alone, without needing to compare
to a model. Simply checking that an RVFT report is
received for every DII instruction within a timeout
suffices to check for lockup conditions, but we also

allow templates to specify asserts that can check for
arbitrary properties of the resulting trace. Running
as a single implementation is important, as we would
like to be able to check for lockup conditions without
needing to align the implementation and model on
all implementation-defined cases of the specification.
This then allows us to inject a string of completely
uniform 32-bit instructions into the processor. DII is
very useful here, as otherwise managing control-flow
in the processor would be difficult. This reproduced
the decode issues, and confirmed that the problem was
resolved following our fixes to Toooba.

This approach surprisingly also found a subtle and
rare branch prediction issue in Toooba that could also
cause a lockup. The fetch stage could get stuck in a
loop, incorrectly predicting that the first instruction is
a compressed jump, then redirecting without correctly
retraining the branch predictor due to an associativity
issue. This shows that the methodology was able to
discover behaviours relying on deep and rare condi-
tions. The framework also identified a fatal assert in
a version of the Sail model.

Conclusion

We have shown several new tools that add additional
capabilities to the TestRIG framework. This closes key
gaps, including validation of the tests generated, sup-
port for generating minimal static unit tests, and extra
tooling for catching lockup bugs. We hope that pro-
cessor implementers can see ever-greater benefits from
joining the ecosystem. All the work is open-source
under permissive licenses: we encourage everyone to
use it and contribute suggestions and improvements!
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