
Who tests the TestRIG? Tooling for randomised tandem verification
Peter Rugg, Alexandre Joannou, Jonathan Woodruff, Franz A. Fuchs, and Simon W. Moore
Department of Computer Science and Technology, University of Cambridge
peter.rugg@cl.cam.ac.uk
Project URL: cheri-cpu.org

UNIVERSITY OF
CAMBRIDGE
Computer Science & Technology

TestRIG
TestRIG is an ecosystem for cross-verifying RISC-V implementations using a
standard RVFI-DII interface. Verification Engines connect to the implementations
over this interface. QuickCheckVEngine uses Haskell’s QuickCheck library to
generate tests and automatically shrink any divergences to a minimal reproducer.
The RISC-V golden Sail model implements RVFI-DII, allowing implementations to
be compared against this (hopefully) correct-by-definition executable simulator.
Since initial publication, the TestRIG infrastructure has seen increasing community
engagement, including users and contributors from Microsoft Research, lowRISC,
and SCI Semiconductor. The repository now links to 10 RVFI-DII-extended
implementations, and has several forks from other members of the community.
TestRIG is in use to test CHERI, which adds unforgeable hardware capabilities for
memory safety and compartmentalisation, in the Toooba and CVA6 processors. The
RISC-V community is in the process of standardising CHERI extensions.

How can we tell the
generated tests are

testing what we want
them to?

What if the processor
never reaches an

“interesting” state?

What if the results
are thrown away
before they are

compared?

What if we have
encoding mistakes
in the generators?

😟

Measuring Coverage
Attempt: code coverage

Measuring lines of code run is a good start, but has the problem that code
may be run, but have no effect on the tested outputs, causing coverage to
pass but bugs to be missed. For example, CHERI checks may get run on
capabilities where the integrity tag is already clear, hiding the error.

Solution: mutation coverage
● Simulate real bugs by modifying the Sail code with incorrect behaviour
● Definitively answer: “would the test framework have caught that bug?”
● Automatically try classes of common mistakes

Implementation
● Python classes describe mutation types: pattern and transformation
● Coverpoints and run results are tracked in a SQLite Database
● Support for building and running many mutants in parallel
● Produces pretty HTML reports to highlight coverage issues

Bonus: relaxing the “tandem”
Aligning implementation and model on every possible instruction input is hard! CSR
legalisation, store conditional failures, misaligned accesses,...
TestRIG now supports a “single implementation” mode: run implementation on its own and
assert more liberal properties over RVFI trace.
Example property: instruction count in = instruction count out, i.e. processor did not lockup.
Template to inject undirected random instructions found and diagnosed:
● Processor mis-decoded and locked up on certain illegal instructions
● Subtle and rare compressed branch mispredict infinite loop
● Reachable fatal assert condition in a version of the Sail model
DII is required to allow such liberal testing without having to reason about control flow.

Future Work
● Switch from Python text transformations to directly

interacting with the Sail compiler
● Automatically inline Sail functions
● Extend supported mutations
● Compare effectiveness of different test suites
● Identify and close coverage blind-spots
● Extend to microarchitectural mutation coverage in

a Verilog implementation
● Find lots of bugs?

Automatic
mutation

Currently supported mutation types:
● Delete “encdec” mappings ➡ “Every instruction tested”
● Delete code lines ➡ “Every side effect tested”
● Replace branch conditions ➡ “Every behaviour tested”

function clause execute (RISCV_JAL(imm, rd)) = {
 let target = PC + sign_extend(imm);
 /* Perform standard alignment check */
 let target_bits = bits_of(target);

 if bit_to_bool(target_bits[1]) then
 {
 RETIRE_FAIL
 } else {
 X(rd) = get_next_pc();
 set_next_pc(target_bits);
 RETIRE_SUCCESS
 }
} Sail JAL semantics

(simplified for illustration)

function clause execute (RISCV_JAL(imm, rd)) = {
 let target = PC + sign_extend(imm);
 /* Perform standard alignment check */
 let target_bits = bits_of(target);

 if false then
 {
 RETIRE_FAIL
 } else {
 X(rd) = get_next_pc();
 set_next_pc(target_bits);
 RETIRE_SUCCESS
 }
} Mutant buggy semantics

TestRIG

blt x20, x0, -1954
bgeu x1, x19, 496
auipc x1, 504870
blt x19, x2, -3472
jalr x3, x0, 842
bge x3, x0, 1220
bge x18, x0, 1280
bne x16, x16, 2934
auipc x0, 614292
jal x0, -225406
jal x20, 757650
blt x1, x17, 2414
jalr x20, x18, -951
beq x3, x2, -3610
jal x17, 128270
beq x19, x16, 3294
jal x16, -823264
beq x20, x3, -2520
beq x1, x18, -1072
beq x16, x0, -3224

Long counterexample trace

 ▼▼▼▼ ▼▼▼▼▼ ▼▼ ▼▼
 Trap: True, PCWD: 0x0000000000000000, RD: 00, RWD: 0x0000000000000000, I: 0x50e1f8ef PRV_M XL:32 (jal x17, 128270)
╷
│ ^ A, B v: mismatch in field trap: 1 != 0, mismatch in field pc_wdata: 0x0 != 0x8001f50e
╵
 Trap: False, PCWD: 0x000000008001f50e, RD: 17, RWD: 0x0000000080000004, I: 0x50e1f8ef PRV_M XL:32 (jal x17, 128270)
 ▲▲▲▲ ▲ ▲▲▲ ▲ ▲▲ ▲ ▲

Automatic shrinking

Minimal, single instruction annotated reproducer

Useful artifacts to collect for a
compatibility test suite

✅
covered

