
Functional verification can take up to 60% of IC/ASIC development time, yet remains poorly integrated with modern software tools. We
propose Toffee a Python-based framework that improves efficiency through:
 (1) async function modeling of hardware APIs, (2) hook-enabled reference models, and (3) test-driven execution.
Results show up to 86% fewer lines of code, 90% faster execution, and setup time under 10 hours, enabling seamless integration with
software workflows.

Toffee enables fast, software-friendly hardware verification.

Toffee: an Efficient and Flexible Python Testing Framework
for Chip Verification

1 Institute of Computing Technology, Chinese Academy of Sciences, 2 University of Chinese Academy of Sciences

Tools like pytest enable auto
test discovery and agile
iteration, greatly improving
flexibility and efficiency.

Huge resource differences in the fields of
software and hardware

Current challenges in integrating with the
software ecosystem

Abstract

Toffee Architecture

Prediction graph explanations

Jincheng Liu1, Zhicheng Yao1, Yunlong Xie1, Zechen Yang2, Junyue Wang1, Xiao Chen1, Kan Shi1,
Sa Wang1 and Yungang Bao1

Advantages of Software
Testing Practices

Software has a much larger
developer pool, driving faster
tool evolution and broader
adoption.

Developer Base Advantage

Legacy structures remain
complex, slowing iteration.

Low Coding Efficiency
Current approaches remain
bound to traditional verification
logic, limiting compatibility with
software tools and accessibility
for software developers.

Poor Tool Integration

Software Ecosystem

DUT Proxy: High-Level
Abstraction for DUT Access
• Wraps low-level pin/clock control into

API-style async functions.
• Driver and monitor methods act as the

DUT’s software-facing API.
• Optional features (e.g., sequencer,

custom transaction) added only when
needed.

Enables fast, modular, and developer-
friendly verification

Model Hub: Simplified and
Flexible Integration

• Toffee connects the reference
model using four hook types:
driver hook, monitor hook, driver
port, and monitor port.

• Hooks provide clean and
structured connections to DUT
inputs and outputs.

• Supports all data paths—from
test case or DUT to reference
model and back.

• Enables automatic result
comparison, reducing manual
effort.

Test Scenario Layer: Software-
Friendly, Test-Driven Execution

• Toffee uses a push model—tests
explicitly control execution.

• Test cases are
async functions,
fully managed
by software
frameworks.

Results

Conclusion

• Efficiency: Toffee reduces LOC by up
to 86.31%, showing strong productivity
in both small and large designs.

• Usability: Software developers set up
environments in 1.8–9.8 hours.

• Integration: Works seamlessly with
tools like pytest and hypothesis.

• Toffee bridges hardware and software
verification with async modeling, hooks,
and test-driven execution.

• It reduces code by up to 86.41% and
integrates smoothly with software tools.

• Real cases and user feedback confirm
its efficiency and practical value.

Results and Conclusion

