
Enabling RISC-V CI in Open-Source Projects:
Challenges and Solutions

Marek Pikuła1

1(Samsung R&D Institute Poland)

Abstract

The adoption of RISC-V as a viable architecture for open-source software development is gaining traction.
However, a major challenge remains: ensuring continuous integration (CI) support for RISC-V in upstream
projects. At Samsung R&D Institute Poland, we addressed this issue by enabling RISC-V CI for several
Freedesktop.org (FDO) projects, including Pixman and GStreamer Orc, and we are currently extending our
work to the Opus codec. This work presents our approach to enabling RISC-V CI in FDO projects, addressing
the challenges of testing architecture-specific optimizations without native hardware support. We detail our
implementation of Docker-based GitLab runners with QEMU emulation, enabling automated multi-architecture
testing while minimizing infrastructure overhead. Our work not only enhances software quality by enabling
automated testing for RISC-V but also provides a framework for future contributions to seamlessly integrate
RISC-V into open-source CI ecosystems.

Introduction

The RISC-V ecosystem has seen rapid expansion, yet
upstream open-source projects often lack Continuous
Integration (CI) support for this architecture. Many
projects primarily test on x86 and ARM due to limited
infrastructure availability. This lack of CI resources
prevents maintainers from validating RISC-V-specific
optimizations, creating a barrier to broader adoption.

This limitation became evident when integrating
RISC-V Vector extension (RVV) support into the Pix-
man library. Without access to RISC-V hardware,
maintainers faced difficulties in validating the imple-
mentation. To address this, we collaborated with
Freedesktop.org (FDO) CI maintainers to develop an
efficient testing workflow that verifies architecture-
specific backends without overwhelming limited CI
resources. We are also in the process of extending our
approach to additional projects, including GStreamer
Orc and Opus.

Overview of Targeted Libraries

Pixman

Pixman[1] is a low-level pixel manipulation library
used by various graphics stacks, including the X server
and Cairo. It features architecture-specific SIMD back-
ends for optimized performance on different platforms
such as x86 (MMX/SSE2, SSSE3), ARM (NEON),
MIPS (DSPr2), PowerPC (AltiVec/VMX), and Loon-
gArch (MMI). SIMD (Single Instruction, Multiple
Data) is a parallel computing technique that acceler-
ates processing by performing the same operation on
multiple data points simultaneously.

GStreamer ORC

GStreamer ORC (The OIL Runtime Compiler)[2] is
a library that dynamically generates vectorized code
from ORC bytecode, enhancing media processing per-
formance. Similar to Pixman, it contains multiple
architecture-specific backends.

Opus

Opus[3] is a widely adopted audio codec designed for
high-quality, low-latency voice and music streaming.
Its architecture-specific optimizations, providing ben-
efits in the processing speed and energy efficiency,
make it a prime candidate for RISC-V enablement,
particularly with RVV support.

Creating the CI Workflow

FDO’s GitLab CI infrastructure is limited to x86 and
ARM, as it relies on donated computing resources.
To enable RISC-V testing without adding significant
maintenance overhead, we implemented a solution
using Docker-based GitLab runners with QEMU user-
mode emulation[4].

Our primary objectives were to:

• Provide CI coverage for all supported architec-
tures (including basic support for Windows using
Wine).

• Use native ARM runners where applicable.
• Build the libraries with both GNU and LLVM

toolchains.
• Execute tests for all SIMD backends.
• Generate a consolidated coverage report.

RISC-V Summit Europe, Paris, 12-15th May 2025 1



Docker Image Preparation

We developed reusable GitLab CI templates to build
multi-architecture Docker images, leveraging extensive
Debian’s cross-architecture support and pre-built base
images.

To enable comprehensive testing, our images in-
cluded necessary toolchains (GNU, LLVM), required
library dependencies, and tooling for analyzing test
results.

Using a multi-stage, composable Docker image ap-
proach, we ensured flexibility—allowing projects to
either use pre-built CI images (GNU, LLVM, Meson
stack) or extend them for project-specific needs (e.g.,
by installing required system dependencies).

Whenever possible, we prioritized native execution
to simplify debugging and enable coverage analysis.
However, for certain architectures (e.g., big-endian
PowerPC 32-bit), cross-compilation was required, in
which case we focused solely on correctness verification.

Build Stage

Initially, Pixman’s CI workflow only ran tests with the
GNU toolchain, leading to overlooked issues in LLVM
builds. Architecture-specific code (e.g., with compiler
intrinsics) can behave differently between compilers,
necessitating dual-toolchain testing. Including both
GNU and LLVM in our workflow uncovered several
previously unreported LLVM-related bugs, improving
the library’s overall reliability.

Test Stage

The CI workflow executes tests across all supported
architecture-specific backends. For instance, x86
builds reuse binaries across MMX, SSE2, and SSSE3
SIMD implementations allowing for running the tests
in parallel.

Similarly, for RVV, we tested multiple vector regis-
ter lengths (VLENs) to identify configuration-specific
issues. Since development hardware we used supported
a VLEN of 256, automated testing of various configu-
rations ensured early discovery of potential issues for
future RISC-V targets.

Summary Stage

Native execution simplified coverage analysis, but each
test run generated separate reports. Manually review-
ing over 40 reports was impractical, so we used gcovr [5]
to merge them into a unified summary, producing both
human-readable and machine-consumable reports for
GitLab’s CI system[6].

Impact and Future Work

Our methodology has already uncovered early-stage
bugs in Pixman’s RVV implementation by testing
across various VLEN configurations. The same ap-
proach will be extended to GStreamer Orc to enhance
RISC-V support in other media processing workloads.

For Opus, automated RISC-V testing significantly
accelerates development, reducing reliance on manual
hardware validation. Our work establishes a scalable
model for integrating RISC-V into CI workflows.

Looking ahead, we plan to expand our methodol-
ogy to additional projects and collaborate with open-
source communities to further enhance RISC-V CI
capabilities.

It’s worth to mention the Cloud-V CI/CD system[7],
which provides real, hardware RISC-V targets for use
in CI/CD workflows. This looks like an interesting
option for the future, in case a project requires, e.g.,
performance measurement in CI, which cannot be
provided in QEMU environment.

Conclusion

By enabling RISC-V CI in upstream open-source
projects, we have addressed one of the key barriers
to RISC-V adoption. Our approach is generic enough
that it can be reused in other Freedesktop.org projects
and in external GitLab instances used by other open
source projects. This work ensures that maintainers
can validate RISC-V contributions without requiring
dedicated hardware, making it easier for developers to
contribute RISC-V optimizations. This success story
demonstrates how strategic CI integration can accel-
erate the growth of RISC-V within the open-source
ecosystem.

References

[1] Freedesktop.org. Pixman. url: https://pixman.org/.

[2] Freedesktop.org. GStreamer ORC. url: https://gitlab.
freedesktop.org/gstreamer/orc.

[3] Jean-Marc Valin, Koen Vos, and Timothy B. Terriberry.
Definition of the Opus Audio Codec. RFC 6716. Sept.
2012. doi: 10.17487/RFC6716. url: https://www.rfc-
editor.org/info/rfc6716.

[4] Docker Inc. Docker: Multi-platform builds. url: https:
//docs.docker.com/build/building/multi-platform/.

[5] Lukas Atkinson and Michael Förderer. gcovr. url: https:
//www.gcovr.com/en/stable/index.html.

[6] GitLab Inc. GitLab: Test coverage visualization. url:
https : / / docs . gitlab . com / ee / ci / testing / test _
coverage_visualization/.

[7] 10xEngineers. Cloud-V: Continuous Deployment and Con-
tinuous Integration (CI/CD). url: https://cloud-v.co/
ci-cd.

2 RISC-V Summit Europe, Paris, 12-15th May 2025

https://pixman.org/
https://gitlab.freedesktop.org/gstreamer/orc
https://gitlab.freedesktop.org/gstreamer/orc
https://doi.org/10.17487/RFC6716
https://www.rfc-editor.org/info/rfc6716
https://www.rfc-editor.org/info/rfc6716
https://docs.docker.com/build/building/multi-platform/
https://docs.docker.com/build/building/multi-platform/
https://www.gcovr.com/en/stable/index.html
https://www.gcovr.com/en/stable/index.html
https://docs.gitlab.com/ee/ci/testing/test_coverage_visualization/
https://docs.gitlab.com/ee/ci/testing/test_coverage_visualization/
https://cloud-v.co/ci-cd
https://cloud-v.co/ci-cd

	Introduction
	Overview of Targeted Libraries
	Pixman
	GStreamer ORC
	Opus

	Creating the CI Workflow
	Docker Image Preparation
	Build Stage
	Test Stage
	Summary Stage

	Impact and Future Work
	Conclusion

