
Enabling RISC-V CI in Open-Source 
Projects: Challenges and Solutions

The adoption of RISC-V as a viable architecture for open-source 
software development is gaining traction. However, a major 
challenge remains: ensuring continuous integration (CI) support for 
RISC-V in upstream projects. We faced this issue at Samsung and 
addressed it by enabling RISC-V CI for several Freedesktop.org 
(FDO) projects, including Pixman and GStreamer Orc, and we are 
currently extending the support to the Opus codec. This work 
presents our approach to enabling RISC-V CI in FDO projects, 
addressing the challenges of testing

addressing the challenges of testing architecture-specific 
optimizations without native hardware support. We detail our 
implementation of Docker-based GitLab runners with QEMU 
emulation, enabling automated multi-architecture testing while 
minimizing infrastructure overhead. Our work not only enhances 
software quality by enabling automated testing for RISC-V, but it also 
provides a framework for future contributions to seamlessly integrate 
RISC-V into open-source CI ecosystem. 

Developer story

Steve is a developer working on implementing 
RVV optimizations in an open source library.


He prepares a patchset, tests it on his RISC-V 
board, and submits the changes upstream.


However, the maintainers reject his proposal as 
they have no way to test the new architecture. Image by Vectorportal.com, CC BY

Solution and goals

Generic, multi-architecture, Continuous Integration templates.

 Provide CI coverage for all supported architectures
 Use native runners where applicable
 Build and test with both GNU and LLVM toolchains
 Execute tests for all supported SIMD backends
 Generate a consolidated coverage report.

Pipeline structure

Docker

docker 7

docker:aarch64 4

docker:kvm 4

Build

bld:linux-amd64 2

bld:linux-riscv64 2

bld:linux-arm64 2

Test

test:linux-amd64 6

test:linux-riscv64 10

test:linux-arm64 2

Summary

summary

Test coverage 82.00%

We developed reusable GitLab CI templates to build 
multi-architecture Docker images, leveraging 
extensive cross-architecture support of Debian.


To enable comprehensive testing, our images included 
necessary toolchains (GNU, LLVM), required library 
dependencies, and tooling for analyzing test results.


Using a multi-stage, composable Docker image 
approach, we ensured flexibility, allowing projects to 
use pre-built images or extend them for project needs.


Whenever possible, we prioritized native execution to 
simplify dependency management and enable 
coverage analysis. However, for certain architectures, 
cross-compilation was required, in which case we 
focused solely on correctness verification.

Initially, Pixman’s CI workflow 
ran tests only with the GNU 
toolchain, leading to 
regressions and overlooked 
issues in LLVM builds.


Architecture-specific code 
(e.g., with compiler intrinsics) 
can behave differently 
between compilers, 
necessitating dual-toolchain 
testing. Including both GNU 
and LLVM in our workflow 
uncovered several previously 
unreported bugs, improving 
the library’s overall reliability.

The CI workflow executes tests across 
all supported architecture-specific 
backends. For instance, x86 builds 
reuse binaries across MMX, SSE2, and 
SSSE3 SIMD implementations allowing 
for running the tests in parallel.


Similarly, for RVV, we tested multiple 
vector register lengths (VLENs) to 
identify configuration-specific issues. 
Since the development hardware we 
used supported the VLEN of 256, 
automated testing of other 
configurations was essential to ensure 
early discovery of potential issues 
for future RISC-V targets.

Native execution simplified 
coverage analysis, but each 
test run generated separate 
reports.


Manually reviewing over 40 
reports was impractical, so 
we used gcovr tool to merge 
them into a unified 
summary, producing both 
human-readable and 
machine-consumable 
reports for GitLab’s CI 
system, allowing for 
seamless integration with 
GitLab GUI.

Benefits for 
Developers

Easily test new revisions on multiple 
virtual targets simultaneously.

Reduce the risk of introducing regressions 
for other architectures when refactoring.

Boost confidence when submitting code 
upstream.

Increase the chances of merging changes 
for new architecture upstream.

Benefits for  
Projects

Centralize CI maintenance shared across 
multiple projects.

Easily integrate the CI pipeline in a new 
project by following configuration from 
other projects.

Reduce time required from maintainers 
during code review.

Minimize risk of accidentally introducing 
regressions into the codebase.

Conclusions

By enabling RISC-V CI in upstream open-source 
projects, we have addressed one of the key 
barriers to RISC-V adoption. Our approach is 
generic enough that it can be reused in other 
Freedesktop.org repositories and in external 
GitLab instances used by other projects.


This work ensures that maintainers can validate 
RISC-V contributions without requiring 
dedicated hardware, making it easier for 
developers to contribute RISC-V optimizations. 
This success story demonstrates how strategic 
CI integration can accelerate the growth of 
RISC-V within the open-source ecosystem.

Marek Pikuła

Samsung R&D Institute Poland 
m.pikula@partner.samsung.com

Embedded developer by day, DevOps engineer by night. Marek creates high-quality, well-tested and 
documented solutions in established technologies while actively exploring the new and shiny. He feels 
the best in complex projects requiring system-level and in-detail perspectives, connecting multiple 
domains from hardware through gateware and firmware up to the software running in the cloud.

RISC-V Summit Europe 2025 https://github.com/MarekPikula/RISC-V-Summit-Europe-2025

https://github.com/MarekPikula/RISC-V-Summit-Europe-2025
https://github.com/MarekPikula/RISC-V-Summit-Europe-2025

