Enhancing EDA Physical Synthesis Workflows with najaeda for the **RISC-V Ecosystem**

Christophe Alexandre

Noam Cohen

keplertech.io

RISC-V enables open hardware, but EDA remains dominated by closed tools

Challenges in Scaling Open-Source EDA

Open Source EDA Must Evolve to Meet the

Demands of Next-Generation Silicon

- Limited access to modern process design kits (PDKs)
- **D** Poor scalability for large, hierarchical designs
- Lack of advanced timing and physical closure tools
- Fragmented toolchains with inconsistent data exchange
- Reliance on outdated or Tcl-centric scripting interfaces
- Support large, hierarchical netlists without flattening
- Enable fast, incremental design changes (ECO flows)
- Move from Tcl to Python-based, software-driven workflows
- Integrate with AI and data science tools (e.g., PyTorch, Pandas)
- Preserve design fidelity across the entire flow
- Provide abstractions for timing, placement, and routing

najaeda: Scalable Open EDA

What is najaeda?

A Python-based framework for post-synthesis EDA, built for scalability and flexibility

Install easily with 'pip install najaeda'

najaeda Python Script Examples

Load and Dump a Netlist

netlist.load_liberty(['NangateOpenCellLibrary_typical.lib'])

top = netlist.load_verilog('netlist.v')

- □ Access a Python-native API (no more Tcl!)
- □ Handle large, hierarchical netlists with high capacity
- Designed for ease of use and rapid prototyping
- Built on optimized C++ data structures for performance
- Discrete Preserves netlist fidelity no flattening, no data loss

top.dump_verilog('.', 'tinyrocket_naja.v')

Print Hierarchical Instance Tree

def print netlist(instance): for child_instance in instance.get_child_instances(): print(f"{child_instance}:{child_instance.get_model_name()}") print_netlist(child_instance)

Results and Perspectives

Optimizing RISC-V Netlists Using najaeda

Design	Characteristics	Initial Primitives	After najaeda Primitives	Logic Reduction
Basilisk	An end-to-end open-source, Linux-capable RISC-V System-on-Chip (SoC) developed by ETH Zürich and fabricated using IHP's open 130 nm technology.	950256	811302	-14,62%
blackparrot	A Linux-capable, cache-coherent, 64-bit RISC-V multicore processor designed to be the default open-source accelerator host	302530	250181	-17,30%
megaboom	One of the largest open-source RISC-V chips.	3871705	3042874	-21,40%

najaeda in Action: Real-World Applications

- **Hierarchical Netlist Optimization:** Efficiently optimize complex, multi-level netlists while preserving hierarchy and minimizing disruption to the original design.
- **FPGA Security Enhancements:** Embed cryptographic keys and implement protection mechanisms for tamper-resistant, secure

FPGA designs.

- **Radiation Fault Tolerance:** Inject redundancy into registers and memory blocks to detect and correct soft errors caused by radiation.
- **Engineering Change Order (ECO) Automation:** Apply precise, incremental updates to existing designs using ECO flows without restarting the full synthesis cycle.

keplertech.io

contact@keplertech.io

