
Enhancing EDA Physical Synthesis
Workflows with najaeda for the

RISC-V Ecosystem
Christophe Alexandre Noam Cohen

❏ Limited access to modern process design kits (PDKs)

❏ Poor scalability for large, hierarchical designs

❏ Lack of advanced timing and physical closure tools

❏ Fragmented toolchains with inconsistent data exchange

❏ Reliance on outdated or Tcl-centric scripting interfaces

A Python-based framework for post-synthesis EDA, built
for scalability and flexibility

❏ Install easily with ‘pip install najaeda’

❏ Access a Python-native API (no more Tcl!)

❏ Handle large, hierarchical netlists with high capacity

❏ Designed for ease of use and rapid prototyping

❏ Built on optimized C++ data structures for performance

❏ Preserves netlist fidelity — no flattening, no data loss

najaeda: Scalable Open EDA

RISC-V enables open hardware, but EDA remains dominated by closed tools

Results and Perspectives

Challenges in Scaling Open-Source EDA

❏ Support large, hierarchical netlists without flattening
❏ Enable fast, incremental design changes (ECO flows)
❏ Move from Tcl to Python-based, software-driven workflows
❏ Integrate with AI and data science tools (e.g., PyTorch,

Pandas)
❏ Preserve design fidelity across the entire flow
❏ Provide abstractions for timing, placement, and routing

Open Source EDA Must Evolve to Meet the
Demands of Next-Generation Silicon

What is najaeda ?

def print_netlist(instance):

 for child_instance in instance.get_child_instances():

 print(f"{child_instance}:{child_instance.get_model_name()}")

 print_netlist(child_instance)

Optimizing RISC-V Netlists Using najaeda

Design Characteristics Initial
Primitives

After
najaeda

Primitives

Logic
Reduction

Basilisk

An end-to-end open-source,
Linux-capable RISC-V
System-on-Chip (SoC)

developed by ETH Zürich and
fabricated using IHP’s open

130 nm technology.

950256 811302 -14,62%

blackparrot

A Linux-capable,
cache-coherent, 64-bit RISC-V
multicore processor designed
to be the default open-source

accelerator host

302530 250181 -17,30%

megaboom One of the largest open-source
RISC-V chips. 3871705 3042874 -21,40%

najaeda Python Script Examples

najaeda in Action: Real-World Applications

❏ Hierarchical Netlist Optimization: Efficiently optimize complex,
multi-level netlists while preserving hierarchy and minimizing
disruption to the original design.

❏ FPGA Security Enhancements: Embed cryptographic keys and
implement protection mechanisms for tamper-resistant, secure
FPGA designs.

❏ Radiation Fault Tolerance: Inject redundancy into registers and
memory blocks to detect and correct soft errors caused by
radiation.

❏ Engineering Change Order (ECO) Automation: Apply precise,
incremental updates to existing designs using ECO flows without
restarting the full synthesis cycle.

Load and Dump a Netlist

netlist.load_liberty(['NangateOpenCellLibrary_typical.lib'])

top = netlist.load_verilog('netlist.v')

top.dump_verilog('.', 'tinyrocket_naja.v')

Print Hierarchical Instance Tree

najaeda
GitHub
page

najaeda
Python

package
contact@keplertech.io

