ETH zürich

Croc: An End-to-End Open-Source Extensible RISC-V MCU Platform to Democratize Silicon

Phillippe Sauter¹, Thomas Benz¹, Paul Scheffler¹, Hannah Pochert¹, Luisa Wüthrich¹, Martin Povišer, Beat Muheim¹, Frank K. Gürkaynak¹, Luca Benini^{1,2} ¹Integrated Systems Laboratory, ETH Zurich ²Department of Electrical, Electronic, and Information Engineering, University of Bologna

1 Motivation

- Silicon democratization is a key objective of "Chips Acts"^{1,2}
 - Addresses shortage of skilled chip designs worldwide
 - Requires open-source hardware platforms with accessible PDKs, EDA tools and design IPs³
- Hands-on ASIC education offers benefits:
 - · Practical experience along theoretical teaching
 - Broad access and deep integration into courses
 - Quick entry and silicon-proven SystemVerilog IPs
- Facilitate innovation with hands-on ASIC experience
 - Student-led experimentation made easy and encouraged
 - Eases transition to industry or startups

Croc is a tapeout-proven education platform with open course material and a well-documented design flow

2 Croc Architecture

- The Croc domain aids students during design and testing
 - CVE2⁴, a **production-ready RISC-V core** based on Ibex
 - Minimal peripherals to ease debugging
 - **OBI-crossbar** as a simple and extensible interconnect
 - Single-cycle SRAM banks to achieve ideal CPI

3 MLEM Student Tapeout

- First tapeout completed in November 2024
 - Two **Bachelor students** finished tapeout
 - UART and Neopixel peripherals
 developed, tested and integrated into Croc
- MLEM implemented in IHP 130nm⁶
 - 48 digital IOs, **5mm²** (350 kGE)
 - Signoff at 80MHz @ 1.2V (tt-corner)

4 Conclusion

 Croc is an education-focused, extensible end-to-end open-source hardware platform

- The User domain as a starting point for custom IPs
- Croc's design flow is simple and documented
 - Newly developed slang-based SystemVerilog frontend
 - **IIC-OSIC-TOOLS container**⁵ eases installation, deployment and use on any desktop OS

the second se

- The minimal SoC is built around mature SystemVerilog IPs used in commercial projects
- The MLEM student chip shows Croc potential as a complete platform for hands-on ASIC courses

References

- 1. The European Chips Act. european-chips-act.com.
- 2. H.R.4346 CHIPS and Science Act. congress.gov/bill/117th-congress/house-bill/4346.
- 3. Importance of Open-Source EDA Tools for Academia. open-source-eda-letter.eu.
- 4. OpenHW Group Contributors. OpenHW Group CVE2 RISC-V IP. github.com/openhwgroup/cve2. 2022.
- 5. IIC-JKU. IIC-OSIC-TOOLS. github.com/iic-jku/IIC-OSIC-TOOLS. 2024.
- H. Krzysztof et al. "Reflections on the First European Open-Source PDK by IHP-Experiences After One Year and Future Activities". In: 31st MIXDES. IEEE. 2024, pp. 19–22.

