
Work-In-Progress: Accelerating Numpy
With OpenBLAS For Open-Source RISC-V Chips

Cyril Koenig1∗, Enrico Zelioli1, Frank K. Gürkaynak1 and Luca Benini1,2

1ETH Zurich
2Università di Bologna

Abstract

RISC-V allows for building general-purpose computing platforms with programmable accelerators around a single
open-source ISA. However, leveraging heterogeneous SoCs within high-level applications is a tedious task. In
this preliminary work, we modify the OpenBLAS library to offload selected linear kernels to a programmable
manycore accelerator (PMCA) using OpenMP. By linking the Python package Numpy against this library, we
enable acceleration of high-level applications. We target an open-source heterogeneous System-on-Chip with a
rv64g Linux capable host and a rv32imafd PMCA. Using this platform emulated on FPGA, and the presented
software stack, we can accelerate Phyton applications with linear algebra operators like matrix multiplication.

Introduction
With the democratization of artificial intelligence

and machine learning, the demand for embedded and
high-performance hardware optimized for linear calcu-
lus is continuously growing. In this context, RISC-V
will allow for building general-purpose platforms with
linear computing accelerators from different vendors
around the same open ISA.

Nevertheless, accelerating applications written in
high-level languages can be a tedious task. The BLAS
API addresses this issue by identifying a list of basic
linear algebra operations. Multiple implementations
of the API have been proposed, and many high-level
applications can leverage their platform-specific op-
timizations by binding linear algebra operators (e.g.,
matrix multiplication).

These implementations can target different purposes.
OpenBLAS, for instance, features hand-crafted kernels
for various architectures and ISAs. BLIS, offers high
performance for symmetric multi-threading [1]. IRIS-
BLAS [2] targets heterogeneous architectures with gen-
eral purpose GPUs. However, there is no open source
implementation combining hand-crafted RISC-V host
kernels and heterogeneous computation with RISC-V
programmable manycore accelerators (PMCAs).

In this work, we use the Hero software development
kit (SDK) presented in [3] to extend OpenBLAS for an
open-source RISC-V based heterogeneous system-on-
chip (heSoC). We add a heterogeneous implementation
of GEneral Matrix Multiply (GEMM) for a rv32imafd
PMCA. We benchmark our accelerated OpenBLAS
implementation from a Python application running
on the rv64g host-core. Our preliminary result show
2.71× execution speedup when offloading a Numpy ma-
trix multiplication on the device rather than executing
it on the host.

∗Corresponding author: cykoenig@iis.ee.ethz.ch

Open-Source Platform

Figure 1: Open-Source heterogeneous platform with CVA6
and Snitch. The L1 SPM contains the device local data, the
dual-port L2 SPM contains constants and device instruc-
tions, and the device DRAM contains physically contiguous
buffers for shared data structures.

The platform1 used in this work is based on Cheshire,
a SoC built around the rv64g application-class core
CVA6. This host is coupled to a PMCA that features
eight Snitch cores with double precision FPUs. The
accelerator cluster contains 128KiB of local scratch-
pad memory (SPM) that is refilled from the external
shared DRAM using a DMA engine. The DRAM is
partitioned into two regions, one used by the operating
system, and one manually managed to avoid fragmen-
tation. When the IOMMU is not used, shared data
structures must be copied to the device DRAM before
use. We emulate the platform on a Xilinx VCU128.

Open-Source Software Stack
For this study, we introduce the software stack

shown in Figure 2. This stack is built upon previous
work for heterogeneous programming.

1 https://github.com/pulp-platform/carfield/tree/date_iommu_evaluation

RISC-V Summit Europe, Paris, 12-15th May 2025 1

mailto:cykoenig@iis.ee.ethz.ch
https://github.com/pulp-platform/carfield/tree/date_iommu_evaluation

dgemm_nt.hero.c
syrk.c

libopenblas.so

libhero_snitch.so

libomptarget.so

hero_allocator.c
hero_snitch.c

numpy.so

main.py
int dgemm(...)
 iommu_map(inputs)
 #pragma omp target
 dma_in(inputs)
 snitch_dgemm(...)
 dma_out(outputs)
 return 0;

import numpy as np
a = np.random(n,n)
b = np.random(n,n)
os.environ
 ["BLAS_HERO"] = "1"
c = a @ b.T

2

1

3

3b 3a

4

5

Figure 2: The proposed software architecture. The Hero library 1○ contains device managements functions. The OpenMP
target library 2○ contains the callbacks for the OpenMP API. The OpenBLAS library 3○ contains computing kernels for
host and/or device. The Numpy 4○ package is linked against OpenBLAS. Finally, the user application 5○ imports Numpy.

HeroSDK: HeroSDK [3] contains a heterogeneous
LLVM (15) compiler, host runtimes, and Linux kernel
(6.1.22) modules to build heterogeneous applications
with OpenMP. The Hero library 1○ contains device
management functions and calls to the kernel mod-
ule (for instance, to map the accelerator’s IO space).
This library contains device-agnostic files such as
hero_allocator.c, which manages L2 SPM and device
DRAM, and device-specific files like hero_snitch.c
which boots the device. This allows for quick porting
to new open-source accelerators. Then, the OpenMP
target library 2○ implements callbacks for the device
offload API via the LibHero. As this stack is imple-
mented in C/C++, it may not be easily usable in
high-level applications. Thus, in this work, we extend
HeroSDK with OpenBLAS support.

Compiling OpenBLAS with HeroSDK: We in-
cluded into OpenBLAS (0.3.29) an heterogeneous
rv64/rv32 implementation of GEMM. With minor
changes to the Makefiles in OpenBLAS, we select ker-
nels to be compiled only for the host like syrk.c 3a○
and kernels to be compiled for the host and accelerator
using the HeroSDK LLVM compiler. The pseudo-code
of the heterogeneous kernel in provided in 3b○. The
execution starts on the host and the region within the
#pragma is compiled and offloaded to the accelerator.
The resulting libopenblas.so 3b○ contains the device
functions to be copied to L2 before the first offload.

Python test application: We can link Numpy to
OpenBLAS 4○, and write Python applications 5○.

Results
We execute the application 5○ with and without

Hero device offloading and measure the execution time
using the Python function os.time(). In Figure 3, we
show the runtime divided into three regions for dif-
ferent problem sizes. During the "data copy" region,
the host copies inputs and outputs between the Linux
portion and the device portion of the DRAM. Dur-
ing "fork/join" the host enters and exits OpenBLAS
and OpenMP. In "compute" the device DMA copies
local data and processes them in SPM. One of the
key challenges of heterogeneous computing is to keep
the "fork/join" and "data copy" overheads as low as
possible to reach interesting speedups. Our solution

Figure 3: Execution time (measured from Python) for a
float64 matrix multiplication with and without offloading.

is 2.71× faster than host-only computation for matri-
ces of size 128. The "data copy" remains the major
overhead with 47% of the total runtime. Since the
platform features an open-source RISC-V IOMMU [4],
future work will focus on removing this overhead via
zero-copy offloading. From a previous study on the
same platform, we expect creating IO page table en-
tries for this input size to be 7.5× faster than copying,
bringing the total speedup to 4.7×. Further improve-
ments can be expected from highly optimized kernels
and SIMD operations on lower precision data types.

Discussion
In this preliminary work, we compile OpenBLAS for

an open-source RISC-V heSoC. With minor modifica-
tions to the codebase, we extend the existing RISC-V
host implementation with heterogeneous kernels for
RISC-V PMCAs. We verify the benefits of the accel-
erator on a simple Python application with Numpy.
This allows for easily leveraging heterogeneous RISC-V
SoCs in high-level applications such as ML frameworks.

References
[1] BLIS performance. https://github.com/flame/blis/

blob/master/docs/Performance.md. Accessed: 2025-02.

[2] N. Rao Miniskar et al. “IRIS-BLAS: Towards a Performance
Portable and Heterogeneous BLAS Library”. In: IEEE 29th
HiPC. 2022.

[3] C. Koenig et al. “HeroSDK: Streamlining Heterogeneous
RISC-V Accelerated Computing from Embedded to High-
Performance Systems”. In: IEEE 42nd ICCD. 2024.

[4] Manuel Rodríguez et al. “Open-source RISC-V In-
put/Output Memory Management Unit (IOMMU) IP”.
In: RISC-V Summit Europe, Barcelona. 2023.

2 RISC-V Summit Europe, Paris, 12-15th May 2025

https://github.com/flame/blis/blob/master/docs/Performance.md
https://github.com/flame/blis/blob/master/docs/Performance.md

	Introduction
	Open-Source Platform
	Open-Source Software Stack
	HeroSDK:
	Compiling OpenBLAS with HeroSDK:
	Python test application:

	Results
	Discussion

