
Work-In-Progress: Accelerating Numpy With

OpenBLAS For Open-Source RISC-V Chips
Cyril Koenig1, Enrico Zelioli1, Frank K. Gürkaynak1, Luca Benini1,2

1Integrated Systems Laboratory, ETH Zurich
2Department of Electrical, Electronic, and Information Engineering, University of Bologna

RISC-V allows for building general-purpose computing platforms

with programmable accelerators around a single open-source ISA.

However, leveraging heterogeneous SoCs within high-level

applications is a tedious task. For this purpose, previous works [1]

proposed dedicated heterogeneous BLAS implementation. In this

work we propose:

• The platform RTL is available on Github with its FPGA flow.

• Using OpenBLAS leverages optimized RISC-V kernels for

the host.

• It is possible to extend OpenBLAS with OpenMP offloading to

use programmable RISC-V accelerators.

• In our preliminary result, the heterogeneous RISC-V platform

shows a 2.74x speedup in Numpy matrix multiplication.

2. Platform Architecture

4. Performance Evaluation

5. Conclusion

References

[1] N. Rao Miniskar, et Al. “RIS-BLAS: Towards a Performance Portable and Heterogeneous

BLAS Library”

[2] M. Rodríguez, et Al. “Open-source RISC-V Input/Output Memory Management

Unit (IOMMU) IP”

[3] C. Koenig et Al. “Evaluating IOMMU-Based Shared Virtual Addressing for RISC-V Embedded

Heterogeneous SoCs”

1. Motivation

pulp-platform.org pulp-platform @pulp_platform cykoenig@iis.ee.ethz.ch

paper

The proposed platform contains:

• Linux capable CVA6 core (rv64gc)

• Programmable Many-Core Accelerator (rv32imafd)

• RISC-V IOMMU [2] with four IO-TLB entries

We show that for matrices of 128 x 128 double precision

elements, the accelerated implementation is 2.74 times faster

than the OpenBLAS implementation optimized for RISC-V.

The heterogeneous execution is split in the following regions:

• Fork/Join for waking the device with OpenMP offloading

• Data copy to copy inputs/outputs in device buffers

• Compute to compute the output in device buffers

The data copy is still significant: 47% of the total runtime.

However, future work will leverage the IOMMU that can

significantly reduce this overhead. From previous work [3] on

the same platform, we expect IO mapping to be 7.5x faster than

data copy for this problem size.

OpenMP target allows for easily porting this implementation to

new platforms (for instance rv32imafdv accelerators).

Execution time for Numpy float64 matrix multiplication (ABT)

Summit Europe 2025

source code and

FPGA flow

3. Software Architecture

① The Hero library contains device managements functions.

② The OpenMP target library contains the callbacks for the

OpenMP API. ③ The OpenBLAS library contains computing

kernels for host and/or device. ④The Numpy package is linked

against OpenBLAS. ⑤ The user application imports Numpy.

We evaluate the platform and OpenBLAS implementation using a

Python example application in⑤ and measure the execution time

using the os.time() function.

➢ An extension of OpenBLAS with heterogeneous kernels support

using OpenMP offloading.

➢ A demonstration of an accelerated Python application using

a RISC-V programmable accelerator.

