Design Exploration of RISC-V Soft-Cores
through Speculative High-Level Synthesis

Jean-Michel Gorius!, Dylan Leothaud!, Simon Rokicki! and Steven Derrien*

1Univ Rennes, Inria, CNRS, IRISA 2Université de Bretagne Occidentale

Abstract

The RISC-V ecosystem is quickly growing and has gained a lot of traction in the FPGA community, as it permits
free customization of both ISA and micro-architectural features. However, the design of the corresponding
micro-architecture is costly and error-prone. We address this issue by providing a flow capable of automatically
synthesizing pipelined micro-architectures directly from an Instruction Set Simulator in C/C++. Our flow
is based on HLS technology and bridges part of the gap between Instruction Set Processor design flows and
High-Level Synthesis tools by taking advantage of speculative loop pipelining. Our results show that our flow
is general enough to support a variety of ISA and micro-architectural extensions, and is capable of producing
circuits that are competitive with manually designed cores.

thieil)mim Ipcl; Speculative HLS
taken = exec(ir) { (
GSSA HLS C
e et extraction F SLP > codegen v XILINX
et — a VITIS

pPc = pc + 4;
X #pragma hls distance mis_pc=4
} e #pragma hls distance ctrl=3
1 2 3 4 5 6 7 8 do { 1 2 3 4 5 6 7 8
#pragma hls pipeline II=1 . .
exec | E ctrl[t] = branch(s_pc[t-31); E|E |E|E E
E mis_pc[t] = target(s_pclt-11); E|E | E E
E cs = nextstate(cs, ctrl[t-3]); E E
+4 [F } F s_pclt] = cs.selS}ow ? _ F|F|F|F F ‘ F|F
target| T T mis_pc[t-4] [T|TLTLT T[T|T
T T | s-pelt-1l + 4; T|T|T TG
T ‘ T if (cs.rollback) T T ‘ T
s_pclt] = s_pclt-4]1;
9 T if (cs.commit) T
pc = s_pclt-41;
. . .. to+=1; e
Static pipelining } while(1); e Speculative pipelining

Figure 1: Our SLP source-to-source transformation flow. The toolchain takes C code o as an input and produces
transformed C code 9 @ and @ show the respective schedules of the input and output code.

4]. In particular, Speculative Loop Pipelining (SLP)
appears as a promising approach as it can handle

Speculative HLS of RISC-V Cores

The RISC-V ecosystem is quickly growing and has
gained a lot of traction in the FPGA community, as
it permits free customization of both the ISA and the
micro-architecture.

Retargeting a compiler to a new ISA is a widely
studied problem, but automatically synthesizing the
corresponding instruction set micro-architecture has
received less attention. Existing tools and technique
offer significant room for improvement: they either lack
generality [1, 2] or operate from low-level structural
models that are not fundamentally different from RTL
specifications.

In the meantime, High-Level Synthesis (HLS) tech-
nology, which compiles C and C-++ code directly to
hardware circuits, has continuously improved. For ex-
ample, several recent research results have shown how
High-Level-Synthesis techniques could be extended to
synthesize efficient speculative hardware structures [3,

*Corresponding author: simon.rokicki@irisa.fr

RISC-V Summit Europe, Paris, 12-15th May 2025

both control-flow and memory speculations within a
classical HLS framework [5].

Our work bridges part of the gap between Instruc-
tion Set Processor design flows and High-Level Syn-
thesis tools. We show how to take advantage of SLP
to automatically synthesize in-order pipelined micro-
architectures from Instruction Set Simulator (ISS)
models written in C, focusing on the RISC-V ISA.
Our contributions are the following:

e We show how SLP can serve as a foundation to
perform fully automatic micro-architectural syn-
thesis from a behavioral description of a processor,
in the form of an ISS. We extend SLP to support
the synthesis of in-order pipelined CPU micro-
architectures and their hazard recovery logic.

e We evaluate our approach in terms of sup-
ported features (both from an ISA and micro-
architectural perspective) and quality of results
(performance and area). Our results show that our

mailto:simon.rokicki@irisa.fr

9 T

= = Sodor
= 4+ Comet
& 8[| Proposed .
=
3
270 .
8 3
9
380 2\1 Lol
=
Q
£ o
L o J
=0 23%
| | | |
1,000 2,000 3,000 4,000 5,000
LUT+FF

‘ —
2 12| s CVE4 B
= 4 Comet
§ Proposed 8
£ 10 0 4
R ;]
2 i
=} [7
h [
I |
a = §
5 1S .
o 6f 4 il
E
E_‘

4 1 1 1

4,500 5,000 5,500 6,000 6,500

LUT+FF

Figure 2: Area/performance result set for 21 variants of RVS2I core (left) and 105 variants of RV32IM core (right)
synthesized through our approach. Results for Sodor, Comet and CVE} are reported on the figure as baselines.

flow can handle complex mechanisms like branch
prediction and hardware Control-Flow Integrity
while providing QoR similar to manual designs.

Our source-to-source transformation flow, depicted
in Figure 1, accepts C code as input and produces spec-
ulatively pipelined C code targeting an HLS toolchain.
The latter can then be compiled /synthesized to obtain
an RTL-level description of the processor core.

The key idea in SLP resides in rescheduling critical
operations to extend their dependence distance before
calling the HLS tool. The HLS static pipelining pass
will harness this additional schedule slack to produce
more aggressive (i.e., deeper) pipelined schedules with
higher clock speeds. The output C code shown in
Part @ of Figure 1 is produced from the input C
code in Part @. Its corresponding execution trace is
provided in Part 9

Results

To demonstrate that our proposed approach can gen-
erate competitive pipelined micro-architectures, we
generate a large set of processors by exploring different
speculation setups: no speculation on the register file,
pipeline interlocking, or forwarding. We also modify
the latency of the different operational blocks used in
the ISS to explore several different pipeline depths. As
baselines, we also synthesize the three Sodor pipelined
cores (2-, 3-, and 5-stage pipelines) and the CV32E40P
core [6]. We synthesize two configurations of the Comet
processor [7], RV32I and RV32IM. As our generated
cores do not implement RISC-V CSR registers, we
remove the CSR unit from the Sodor and CVE4 cores.
Our experiments target an Artix7 XC7A200TISBG-
1L and use Vitis HLS 2021.2 as the HLS backend.
Performance results were obtained by executing the
Dhrystone benchmark, compiled using newlibc.
Results of the automatic design space exploration
are provided in Figure 2. The leftmost part repre-
sents the results obtained for the RV32I ISA, and the
rightmost part represents the results obtained with

the RV32IM ISA. The generated micro-architectures
are slower than the Sodor and Comet baselines for
the RV32I ISA, while we are able to generate faster
cores for the RV32IM target (55% faster than CVE4).
Our generic approach generates extra control logic on
the critical path of the RV32I cores, reducing their
maximal frequency. On the other hand, the critical
path of RV32IM cores is located in the multiplica-
tion/division unit. The extra logic that hinders the
RV32I performance could be optimized during the SLP
transformation, but this improvement is left for future
work.

References

[1] Gai Liu, Joseph Primmer, and Zhiru Zhang. “Rapid gener-
ation of high-quality RISC-V processors from functional
instruction set specifications”. In: 2019 56th ACM/IEEE
Design Automation Conference (DAC). IEEE. 2019, pp. 1-
6.

[2] Peter Yiannacouras, Jonathan Rose, and J Gregory Steffan.
“The microarchitecture of FPGA-based soft processors”. In:
Proceedings of the 2005 international conference on Com-
pilers, architectures and synthesis for embedded systems.
2005, pp. 202-212.

[3] Steven Derrien et al. “Toward Speculative Loop Pipelin-
ing for High-Level Synthesis”. In: IEEE Transactions on
Computer-Aided Design of Integrated Clircuits and Systems
39.11 (2020), pp. 4229-4239.

[4] Lana Josipovié, Andrea Guerrieri, and Paolo Ienne.
“Speculative Dataflow Circuits”. In: Proceedings of the
2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. FPGA ’19. Seaside, CA, USA:
Association for Computing Machinery, 2019, pp. 162-171.
ISBN: 9781450361378. por: 10.1145/3289602.3293914.

[5] Jean-Michel Gorius, Simon Rokicki, and Steven Derrien.
“SpecHLS: Speculative Accelerator Design Using High-
Level Synthesis”. In: IEEE Micro 42.5 (2022), pp. 99—
107. po1: 10.1109/MM.2022.3188136.

[6] Andreas Traber et al. “PULPino: A small single-core RISC-
V SoC”. In: 3rd RISCV Workshop. 2016.

[7] Simon Rokicki et al. “What You Simulate Is What You
Synthesize: Design of a RISC-V Core from C++ Specifica-
tions”. In: RISC-V Workshop 2019. 2019, pp. 1-2.

RISC-V Summit Europe, Paris, 12-15th May 2025

https://doi.org/10.1145/3289602.3293914
https://doi.org/10.1109/MM.2022.3188136

	Speculative HLS of RISC-V Cores
	Results

