
CVA6 Design Space Exploration on Agilex 7 FPGA
Angela Gonzalez1, Mustafa Karadayi1, Franck Jeulin2, Christophe Biquard2 and Jérôme Quévremont2

1PlanV, 2Thales
corresponding author: angela.gonzalez@planv.tech

Abstract

CVA6 offers a wide range of configuration parameters that permit to tailor the core to different applications.
However, the vast number of existing parameters can be overwhelming, making it difficult to know where to start
from, or which are the right choices to make. This work presents the results of design space exploration of CVA6
focusing on FPGA targets, in particular, on the Agilex 7 platform from Altera. Starting from the existing FPGA
configuration from OpenHW, we explore two directions: (i) maximizing performance and (ii) minimizing resources.
We show the results achieved for different configurations, providing insights on the impact of different parameters
(e.g. memory architecture, extensions, etc.) Among a variety of combinations, we find a sweet-spot that permits to
achieve 30% performance improvement together with 50% reduction of registers, compared to the existing FPGA
configuration which is primarily optimized for Xilinx. With this example and other exploratory results, this work aims
at simplifying the initial choices in the configuration of new designs based on CVA6.

Introduction
CVA61 is a popular open source RISC-V CPU from

OpenHW Foundation. It is highly configurable, allowing
for designing a wide range of cores: from solutions for
applications with Linux support to embedded processors
running bare-metal applications. While this offers great
flexibility, it brings also the challenge to choose the best
configuration for a new design. Besides that, CVA6 was
initially designed for ASIC targets, but the interest to have a
vendor-independent FPGA version emerged, resulting in
the FPGA configuration maintained in CVA6 repository. In
this work, we explore the capabilities of CVA6 for an
FPGA target (Agilex 7 from Altera2). We start from the
existing FPGA configuration, and explore what is possible
both in terms of performance and reduction of resources,
focusing on embedded configurations.

Porting & Optimizing CVA6 on Altera FPGA
The FPGA configuration defined in previous work,

optimizes CVA6 for FPGAs [1]. The optimizations in that
work included technology agnostic and technology specific
ones (targeting Xilinx). The latter, can be enabled with a
configuration flag (FpgaEn). However, they can’t be reused
in our case because the FPGA fabric does not support the
same primitives. The first step in this study was to port the
technology specific optimizations to Altera technology. The
second one, to create a design equivalent to the Xilinx
Application Processing Unit (APU) for Agilex 7 platform.
Both items have been contributed to CVA6 repository and
are available to the community.

Design Space Exploration
We start with the FPGA configuration as is (Config. A in

Table 1), getting the performance (Table 2) and resources
usage (Table 3) of CVA6. We will use these results as a
reference to benchmark other configurations.

1 https://github.com/openhwgroup/cva6
2 https://www.intel.com/content/www/us/en/docs/

programmable/683024/current/overview.html

Table 1: Configurations Explored
A OpenHW FPGA config. w/o Xilinx optimizations
B Altera FPGA optimizations enabled
C No MMU
D B + C + best cache performance*
E D + no privilege levels
F E + only C extension (remove Zcb, A, B, Zicond)
G F + store and commit buffer depth 2
H G + reduced cache**
I H + 2 scoreboard entries
J I + one single load buffer entry
K J + SRAM instead of DDR
L H + SRAM instead of DDR
*best cache performance: 16 KB cache, 512 bits cache line
and 4 ways. Same for Data and Instruction caches.
**reduced cache: cache line of 64 (width of AXI bus),
with only 1 way. 8KB instruction cache, 4kB data cache.

First of all, we evaluate the impact of the FPGA
optimizations that have been ported to Altera technology
(Config. B). The results show that the FPGA optimizations
permit to reduce the number of Flip-Flops (FFs) by 34%,
and the number of Look Up Tables (LUTs) by 7 %, in
exchange for a 33 % of extra Block RAM (BRAM). This
was expected since the optimizations focus on moving
registers to memory resources, to improve the routing in the
FPGA. The overall performance (Coremark) improves
slightly, because the maximum frequency achieved on the
FPGA is a bit higher (thanks to the better routing in the
FPGA when moving registers to memory).

Secondly, we evaluate the impact of the Memory
Management Unit (MMU). Overall, removing the MMU
reduces resources between 9 and 16%. Since we are
focusing on embedded configurations, we are not interested
in configurations that offer Linux support, so we continue
this exploration without MMU.

Thirdly, we try to push the performance. A typical pain
point is the memory access, so we evaluate different cache
configurations.

RISC-V Summit Europe, Paris, 12-15th May 2025 1

https://github.com/openhwgroup/cva6
https://www.intel.com/content/www/us/en/docs/programmable/683024/current/overview.html
https://www.intel.com/content/www/us/en/docs/programmable/683024/current/overview.html

Table 2: HW resources required by each configuration
LUTs FFs BRAM

A 12530 8959 24
B 11621 -7% 5874 -34% 32 +33%
C 11411 -9% 7908 -12% 20 -16%
D 15773 +26% 7521 -16% 135 +462%
E 15591 +24% 7409 -17% 135 +462%
F 13738 +10% 7036 -21% 135 +462%
G 13823 +10% 6650 -26% 135 +462%
H +L 7710 -38% 4422 -50% 16 -33%
I 7150 -43% 3874 -56% 16 -33%
J +K 7273 -42 % 3837 -57 % 16 -33 %

 The best result was achieved with the cache described in
Config. D, improving performance by 25%.The cache line
is set according to the throughput of the DDR memory used
in this design. However, we see that the use of BRAM has
exploded with respect to the original FPGA optimizations.
This is because the use of a big cache line infers an
inefficient use of the BRAM blocks available in the Agilex
7 FPGA. We also see an increase in LUTs and FFs
compared to the FPGA optimized version of OpenHW
configuration (Config. B), related to the bigger cache. As
next step we focused on reducing resources without
sacrificing performance and find two ways to do it:
eliminate privilege levels (Config. E) and extensions
(Config. F). After this, changes impact the performance.

The distribution of FFs in Config. F is shown in Fig. 1.
As expected, the cache is taking a lot of resources. The next
biggest impact is the Load Store Unit (LSU), followed by
the scoreboard (SCB). We try first with the LSU to see if
we can get some reduction without dropping too much the
performance. Reducing the depth of the store and commit
buffer (Config. G) lowers the Coremark/MHz to 1.9 and
reduces about 400 FFs compared to Config. F.

At this point we decide to prioritize resources reduction,
to see where it is possible to get in spite of performance.
We reduce the cache (Config. H), the number of scoreboard
entries (Config. I) and the number of entries in the load
buffer (Config. J). Now, the resources have decreased
considerably (up to 57% in FFs), but the performance is
also lower (-17%). The new distribution is shown in Fig. 2.
Since we previously identified the memory accesses as a
pain point, we decide to explore other memory
architectures. Until here, the APU design is using a DDR as
main memory. In the next experiments, we move from
using the DDR to using an internal SRAM.

Table 3: Performance obtained for each configuration
Coremark/MHz Fmax (MHz) Coremark Total

A 2.00 200 400
B 2.00 215 430 +7%
C 2.00 215 430 +7%
D 2.30 215 498 +25%
E 2.30 217 499 +25%
F 2.30 218 501 +25%
G 2.25 220 495 +24%
H 1.90 220 418 +4%
I 1.50 220 330 -17%
J 1.50 220 330 -17%
K 1.80 210 378 -5%
L 2.50 210 525 +31 %

 The goal of this change is to evaluate the performance of
CVA6 itself, decoupling it from a specific memory
architecture. We show the results for the configuration with
lowest resources achieved (K) and for the smallest one that
does not incur in performance losses (L). We see that, by
eliminating the DDR path latency, the performance
recovers to values close to the best ones (or even better).
The overall results show that it is possible to keep almost
the same performance (-5%) with a reduction of 57% in
FFs, or to get higher performance (+31%) with a reduction
of 50% in FFs.

Conclusion & Future Work
Overall, we have showcased the flexibility of CVA6 and
provided results with different example configurations.
These results can be used by the community as reference to
make informed choices in future FPGA designs. Future
work could follow [2], where performance on ASIC
achieved a Coremark/MHz of 3.09 with another memory
architecture, and estimated an increase to 4.5 in a dual issue
version, which could also be optimized for FPGA targets.

References
[1] Sébastien Jacq et al. Recent achievements of the Open-
Source CVA6 Core. RISC-V summit Europe 2023
[2] Côme Allart et al. Performance Modeling of CVA6 with
Cycle-Based Simulation. RISC-V summit Europe 2023

2 RISC-V Summit Europe, Paris, 12-15th May 2025

Figure 1: FFs distribution in Config. F

Figure 2: FFs distribution in Config. J

	Abstract
	Introduction
	Porting & Optimizing CVA6 on Altera FPGA
	Design Space Exploration
	Conclusion & Future Work
	References

