## CVA6 Design Space Exploration on Agilex<sup>™</sup> 7 FPGA

Angela Gonzalez<sup>1</sup>, Mustafa Karadayi<sup>1</sup>, Franck Jeulin<sup>2</sup>, Christophe Biquard<sup>2</sup> and Jérôme Quévremont<sup>2</sup>

<sup>1</sup> PlanV <sup>2</sup> Thales

## **CVA6 CONFIGURABILITY: A BENEFIT AND A CHALLENGE**

CVA6 offers a wide range of configuration parameters that permit to design a variety of cores: from solutions for applications with Linux support to embedded processors running bare-metal applications. While this offers great flexibility, it also brings the challenge to choose the best configuration for a new design, making it difficult to know where to start from, or which are the right choices to make.

## **DESIGN SPACE EXPLORATION**

We start with the FPGA configuration as is (A), and explore what is possible in terms of performance and reduction of resources, focusing on embedded configurations.

## **EXPLORED CONFIGURATIONS**

- A OpenHW FPGA config. without Xilinx FPGA optimizations
- **B** Altera<sup>™</sup> FPGA optimizations enabled

# **PORTING & OPTIMIZING CVA6 ON ALTERAFPGA**

CVA6 was initially designed for ASIC targets, but the interest to have a vendor-independent FPGA version emerged, resulting in the FPGA configuration in CVA6 repository.

The existing configuration is optimized for Xilinx FPGAs (now AMD). The current work optimizes CVA6 for Altera<sup>™</sup> FPGAs.

 Porting the technology specific optimizations to Altera<sup>™</sup> technology: Altera<sup>™</sup> and Xilinx support different primitives, so some of the optimizations used for Xilinx FPGAs can't be reused in Altera<sup>™</sup> (e.g. asynchronous RAM)

2)Creating a design equivalent to the Xilinx Application Processing Unit (APU) for Agilex<sup>™</sup> 7 platform.

- C No MMU
- **D B** + **C** + best cache performance\*
- E D + no privilege levels
- F E + only C extension (remove Zcb, A, B, Zicond)
- **G F** + store and commit buffer depth 2
- H G + reduced cache\*\*
- I H + 2 scoreboard entries
- J I + one single load buffer entry
- **K** J + SRAM instead of DDR

### L H + SRAM instead of DDR

\*best cache performance: 16 KB cache, 512 bits cache line and 4 ways. Same for Data and Instruction caches. \*\*reduced cache: cache line of 64 (width of AXI bus), with only 1 way. 8KB instruction cache, 4KB data cache.

## RESULTS

## PERFORMANCE

## RESOURCES

## **DISTRIBUTION OF FFs**

Coromark/ Emax Coromark

|   | Coremark/ | Fmax  | Coremark |      |
|---|-----------|-------|----------|------|
|   | MHz       | (MHz) | Total    |      |
| Α | 2.00      | 200   | 400      |      |
| В | 2.00      | 215   | 430      | +7%  |
| С | 2.00      | 215   | 430      | +7%  |
| D | 2.30      | 215   | 498      | +25% |
| Е | 2.30      | 217   | 499      | +25% |
| F | 2.30      | 218   | 501      | +25% |
| G | 2.25      | 220   | 495      | +24% |
| н | 1.90      | 220   | 418      | +4%  |
|   | 1.50      | 220   | 330      | -17% |
| J | 1.50      | 220   | 330      | -17% |
| K | 1.80      | 210   | 378      | -5%  |
| L | 2.50      | 210   | 525      | +31% |

|     | LU     | Ts    | F     | Fs   | B   | RAM   |
|-----|--------|-------|-------|------|-----|-------|
| Α   | 12,530 |       | 8,959 |      | 24  |       |
| В   | 11,621 | -7%   | 5,874 | -34% | 32  | +33%  |
| С   | 11,411 | -9%   | 7,908 | -12% | 20  | -16%  |
| D   | 15,773 | +26%  | 7,521 | -16% | 135 | +462% |
| E   | 15,591 | +24%  | 7,409 | -17% | 135 | +462% |
| F   | 13,738 | +10%  | 7,036 | -21% | 135 | +462% |
| G   | 13,823 | +10%  | 6,650 | -26% | 135 | +462% |
| H+L | 7,710  | -38%  | 4,422 | -50% | 16  | -33%  |
|     | 7,150  | -43%  | 3,874 | -56% | 16  | -33%  |
| J+K | 7,273  | -42 % | 3,837 | -57% | 16  | -33%  |



**Config J** 

**3837 FFs** 

Et (ISU)

ISSUE

(SCB)

#### KEY RESULTS

- FPGA optimizations successfully ported to Altera<sup>TM</sup> technology  $\rightarrow$  reduce 34% of FFs • Frequency optimizations offered by Quartus<sup>®</sup>  $\rightarrow$  up to 220 MHz (started at 175 MHz)
- Best performance result is achieved with biggest cache  $\rightarrow$  memory access as bottleneck

After cache, the biggest resources consumption is in the LSU → performance tradeoff
After LSU, the biggest resources consumption is in the Scoreboard → performance tradeoff

 Change APU design to use SRAM instead of DDR → decouple CVA6 performance from memory architecture

#### ACKNOWLEDGEMENTS

The authors acknowledge the OpenHW staff and members who are actively contributing to CVA6

