
Fused-Tiled Layer: Minimizing Data

Movement on RISC-V SoCs

Victor J.B. Jung1, Alessio Burrello3, Francesco Conti2, Luca Benini1,2

1Integrated Systems Laboratory, ETH Zurich | 2Department of Electrical, Electronic and Information Engineering,

University of Bologna | 3DAUIN, Politecnico of Turin

How can we minimize data movement on RISC-V SoCs

featuring software-managed caches? We propose Fused-Tiled

Layers (FTL), a novel algorithm for automatic fusion between

tiled layers. We leverage the flexibility and efficiency of a RISC-V

heterogeneous SoC [1] to integrate FTL and benchmark it on a

Multi-Perceptron stage of Vision Transformers.

Fused-Tiled Layers (FTL) formulates the tiling of each DNN layer

as a constraint optimization problem, where each output tensor

dimension is linked to input tensor dimensions via a linear

transformation, allowing us to merge several layers to generate

valid layer fusion solutions for any layer combination. By doing

so, we minimize transfers from L2 memory to LLC.

• We presented Fused-Tiled Layers, a new algorithm to fuse

the tiling of several consecutive layers.

• We benchmarked Fused-Tiled Layer on a RISC-V

heterogeneous SoC, for:

• 60.1% improvement in runtime.

• 47.1% reduction in off-chip transfers and on-chip data

movement.

2 Method Overview

3 Results and Discussion

4 Conclusion

References

[1] A. S. Prasad, M. Scherer, F. Conti et al., “Siracusa: A 16 nm heterogenous RISC-V SoC for

extended reality with at-MRAM neural engine,” IEEE Journal of Solid-State Circuits, 2024.

[2] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image recognition at

scale,” in Proc. 9th Int. Conf. Learning Representations (ICLR), Austria, OpenReview.net, 2021.

1 Introduction

Fused-Tiled Layers: Minimizing Data

Movement on RISC-V SoCs

Victor J.B. Jung1, Alessio Burrello3, Francesco Conti2, Luca Benini1,2

1Integrated Systems Laboratory, ETH Zurich | 2DEI, University of Bologna | 3DAUIN, Politecnico of Turin

Summit Europe 2025
pulp-platform @pulp_platform jungvi@iis.ee.ethz.ch

A B C D E

GEMM GeLU

Ax

Bx

ExDxCx

A
batch

D
batch

C
batchB

batch

E
batch

By DyCyAy Ey

Ay = Cy Bx = Cx

Abatch = Bbatch = Cbatch

1

Ax = By = 64

Ay > Ncores Bx > Ncores

Ay % Ncores = 0

Bx % Ncores = 0

Dbatch = Ebatch

Dy = Ey Dx = Ex

Dbatch*Dx*Dy% Ncores = 0

Dbatch*Dx*Dy > Ncores

2

1

2Geometrical Constraints

Flexible Performance

Constraints

Kernel Policy Constraint

3 Fuse Layer Constraints Cx = Dx Cy = Dy Cbatch = Dbatch

4 Tiling and Memory Allocation Solver Objective function: max(L1utilization)

32

64 32

64

32

32

32

32

32

32

R
V

3
2

32 Bit Logarithmic InterconnectRV32

Accelerator-Router

Branch

DMA

3
2

 B
it
 L

2
 I
n
te

rc
o
n

n
e
c
t

R
V

3
2

R
V

3
2

R
V

3
2

R
V

3
2

R
V

3
2

R
V

3
2

R
V

3
2

L1 32 KB NPU

I/O

L2

 64 KB

A B C D E

GEMM GeLU

Ax

Bx

ExDxCx

A
batch

D
batch

C
batchB

batch

E
batch

By DyCyAy Ey

Ay = Cy Bx = Cx

Abatch = Bbatch = Cbatch

1

Ax = By = 64

Ay > Ncores Bx > Ncores

Ay % Ncores = 0

Bx % Ncores = 0

Dbatch = Ebatch

Dy = Ey Dx = Ex

Dbatch*Dx*Dy% Ncores = 0

Dbatch*Dx*Dy > Ncores

2

1

2Geometrical Constraints

Flexible Performance

Constraints

Kernel Policy Constraint

3 Fuse Layer Constraints Cx = Dx Cy = Dy Cbatch = Dbatch

4 Tiling and Memory Allocation Solver Objective function: max(L1utilization)

32

64 32

64

32

32

32

32

32

32

: We attribute a variable for each tensor dimension related to the

given operator.

A B C D E

GEMM GeLU

Ax

Bx

ExDxCx

A
batch

D
batch

C
batchB

batch

E
batch

By DyCyAy Ey

Ay = Cy Bx = Cx

Abatch = Bbatch = Cbatch

1

Ax = By = 64

Ay > Ncores Bx > Ncores

Ay % Ncores = 0

Bx % Ncores = 0

Dbatch = Ebatch

Dy = Ey Dx = Ex

Dbatch*Dx*Dy% Ncores = 0

Dbatch*Dx*Dy > Ncores

2

1

2Geometrical Constraints

Flexible Performance

Constraints

Kernel Policy Constraint

3 Fuse Layer Constraints Cx = Dx Cy = Dy Cbatch = Dbatch

4 Tiling and Memory Allocation Solver Objective function: max(L1utilization)

32

64 32

64

32

32

32

32

32

32

: We formulate the constraints for the tiling of the single operator:

• Geometrical Constraints: decribe the data dependency between

the dimensions of the output and input tensors.

• Kernel Policy Constraints: ensure that we respect the

specificities of the kernel’s dataflow.

• Flexible Performance Constraints: to boost the hardware

utilization, for instance to encourage parallelization.

A B C D E

GEMM GeLU

Ax

Bx

ExDxCx

A
batch

D
batch

C
batchB

batch

E
batch

By DyCyAy Ey

Ay = Cy Bx = Cx

Abatch = Bbatch = Cbatch

1

Ax = By = 64

Ay > Ncores Bx > Ncores

Ay % Ncores = 0

Bx % Ncores = 0

Dbatch = Ebatch

Dy = Ey Dx = Ex

Dbatch*Dx*Dy% Ncores = 0

Dbatch*Dx*Dy > Ncores

2

1

2Geometrical Constraints

Flexible Performance

Constraints

Kernel Policy Constraint

3 Fuse Layer Constraints Cx = Dx Cy = Dy Cbatch = Dbatch

4 Tiling and Memory Allocation Solver Objective function: max(L1utilization)

32

64 32

64

32

32

32

32

32

32

: We select the consecutive layers to fuse and bind their shared

tensors dimensions. This step effectively constructs one constraint

optimization problem representing the tiling of several layers.

A B C D E

GEMM GeLU

Ax

Bx

ExDxCx

A
batch

D
batch

C
batchB

batch

E
batch

By DyCyAy Ey

Ay = Cy Bx = Cx

Abatch = Bbatch = Cbatch

1

Ax = By = 64

Ay > Ncores Bx > Ncores

Ay % Ncores = 0

Bx % Ncores = 0

Dbatch = Ebatch

Dy = Ey Dx = Ex

Dbatch*Dx*Dy% Ncores = 0

Dbatch*Dx*Dy > Ncores

2

1

2Geometrical Constraints

Flexible Performance

Constraints

Kernel Policy Constraint

3 Fuse Layer Constraints Cx = Dx Cy = Dy Cbatch = Dbatch

4 Tiling and Memory Allocation Solver Objective function: max(L1utilization)

32

64 32

64

32

32

32

32

32

32

: We solve the constraint optimization problem representing the

tiling and memory allocation. To guide the search, we use a L1

memory maximization heuristic and initialize the tensor dimension

variables to their maximum values.

A B C D E

GEMM GeLU

Ax

Bx

ExDxCx

A
batch

D
batch

C
batchB

batch

E
batch

By DyCyAy Ey

Ay = Cy Bx = Cx

Abatch = Bbatch = Cbatch

1

Ax = By = 64

Ay > Ncores Bx > Ncores

Ay % Ncores = 0

Bx % Ncores = 0

Dbatch = Ebatch

Dy = Ey Dx = Ex

Dbatch*Dx*Dy% Ncores = 0

Dbatch*Dx*Dy > Ncores

2

1

2Geometrical Constraints

Flexible Performance

Constraints

Kernel Policy Constraint

3 Fuse Layer Constraints Cx = Dx Cy = Dy Cbatch = Dbatch

4 Tiling and Memory Allocation Solver Objective function: max(L1utilization)

32

64 32

64

32

32

32

32

32

32

We perform our benchmark on a reduced version of the RISC-V

Siracusa [1] SoC; its architecture is described below. The 8 RISC-V

cores are using the RV32IMCF-XPulpV2 ISA tailored to DSP tasks,

and the NPU is targeting GEMM and convolution.

We benchmark a GEMM followed by a GeLU activation function.

These layers are commonly found in the MLP stage of ViT [2]. There

are two reasons to explain such runtime reduction:

• First, FTL reduces the number of DMA transfers by 47.1% by

preventing the materialization of the MLP's intermediate tensor.

• Second, the L2 memory capacity is exceeded when materializing

the MLP's intermediate tensor; hence, this tensor is stored in L3

RAM. With FTL, we don't need to perform costly off-chip memory

transfers to bring back the intermediate tensor from L3 to L1,

leading to a reduction of the runtime.

If double-buffering is used, FTL speeds

up execution only if the kernel runtime

is less than the DMA's runtime. As

reported in the nearby figure, this is the

case when using both the cluster and

the NPU.

	Slide 1

