
Fused-Tiled Layer: Minimizing Data 

Movement on RISC-V SoCs

Victor J.B. Jung1, Alessio Burrello3, Francesco Conti2, Luca Benini1,2

1Integrated Systems Laboratory, ETH Zurich | 2Department of Electrical, Electronic and Information Engineering, 

University of Bologna | 3DAUIN, Politecnico of Turin

How can we minimize data movement on RISC-V SoCs 

featuring software-managed caches? We propose Fused-Tiled 

Layers (FTL), a novel algorithm for automatic fusion between 

tiled layers. We leverage the flexibility and efficiency of a RISC-V 

heterogeneous SoC [1] to integrate FTL and benchmark it on a 

Multi-Perceptron stage of Vision Transformers.

Fused-Tiled Layers (FTL) formulates the tiling of each DNN layer 

as a constraint optimization problem, where each output tensor 

dimension is linked to input tensor dimensions via a linear 

transformation, allowing us to merge several layers to generate 

valid layer fusion solutions for any layer combination. By doing 

so, we minimize transfers from L2 memory to LLC.

• We presented Fused-Tiled Layers, a new algorithm to fuse 

the tiling of several consecutive layers.

• We benchmarked Fused-Tiled Layer on a RISC-V 

heterogeneous SoC, for:

• 60.1% improvement in runtime.

• 47.1% reduction in off-chip transfers and on-chip data 

movement.

2 Method Overview

3 Results and Discussion

4 Conclusion
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: We attribute a variable for each tensor dimension related to the 

given operator.
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: We formulate the constraints for the tiling of the single operator: 

• Geometrical Constraints: decribe the data dependency between 

the dimensions of the output and input tensors. 

• Kernel Policy Constraints: ensure that we respect the 

specificities of the kernel’s dataflow. 

• Flexible Performance Constraints: to boost the hardware 

utilization, for instance to encourage parallelization. 
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: We select the consecutive layers to fuse and bind their shared 

tensors dimensions. This step effectively constructs one constraint 

optimization problem representing the tiling of several layers.

A B C D E

GEMM GeLU

Ax

Bx

ExDxCx

A
batch

D
batch

C
batchB

batch

E
batch

By DyCyAy Ey

Ay = Cy  Bx = Cx  

Abatch = Bbatch = Cbatch

1

Ax = By = 64 

Ay > Ncores Bx > Ncores 

Ay % Ncores = 0

Bx % Ncores = 0

Dbatch = Ebatch

Dy = Ey  Dx = Ex  

Dbatch*Dx*Dy% Ncores = 0

Dbatch*Dx*Dy > Ncores

2

1

2Geometrical Constraints

Flexible Performance

Constraints

Kernel Policy Constraint

3 Fuse Layer Constraints Cx = Dx  Cy = Dy  Cbatch = Dbatch  

4 Tiling and Memory Allocation Solver Objective function: max(L1utilization)

32

64 32

64

32

32

32

32

32

32

: We solve the constraint optimization problem representing the 

tiling and memory allocation. To guide the search, we use a L1 

memory maximization heuristic and initialize the tensor dimension 

variables to their maximum values.
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We perform our benchmark on a reduced version of the RISC-V 

Siracusa [1] SoC; its architecture is described below. The 8 RISC-V 

cores are using the RV32IMCF-XPulpV2 ISA tailored to DSP tasks, 

and the NPU is targeting GEMM and convolution. 

We benchmark a GEMM followed by a GeLU activation function. 

These layers are commonly found in the MLP stage of ViT [2]. There 

are two reasons to explain such runtime reduction:

• First, FTL reduces the number of DMA transfers by 47.1% by 

preventing the materialization of the MLP's intermediate tensor.

• Second, the L2 memory capacity is exceeded when materializing 

the MLP's intermediate tensor; hence, this tensor is stored in L3 

RAM. With FTL, we don't need to perform costly off-chip memory 

transfers to bring back the intermediate tensor from L3 to L1, 

leading to a reduction of the runtime.

If double-buffering is used, FTL speeds 

up execution only if the kernel runtime 

is less than the DMA's runtime. As 

reported in the nearby figure, this is the 

case when using both the cluster and 

the NPU.
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