Programming RISC-V accelerators via Fortran

Nick Brown'? Jake Davies!, Felix LeClair?

1EPCC, The University of Edinburgh, 47 Potterrow, Edinburgh, UK
2Tenstorrent, 2600 Great America Way, Santa Clara, CA, USA

Abstract

A range of RISC-V based accelerators are available and coming to market, and there is strong potential for
these to be used for High Performance Computing (HPC) workloads. However, such accelerators tend to provide
bespoke programming models and APls that require codes to be rewritten. In scientific computing, where many of

the simulation code are highly complez, extensive, and written in Fortran, this is not realistic. In this extended

abstract we present an approach that enables driving such architectures via Fortran, avoiding code redevelopment.

Introduction

Whilst RISC-V has grown rapidly in areas such as em-
bedded computing, it is yet to gain significant traction
in High Performance Computing (HPC). However, as
we move further into the exascale era the HPC com-
munity will be faced by a range of new challenges, for
instance the requirement to decarbonise their work-
loads, and there is the potential for RISC-V to play
an important role.

Arguably, it is likely that we will first see adop-
tion of RISC-V in HPC via PCle accelerator cards.
These can can be easily fitted into existing systems
and because it enables centres to dip their toe into the
RISC-V ecosystem it limits their risk as other parts
of the supercomputer remain the same. Indeed, there
are a range of RISC-V PCle accelerators cards that
are shipping, such as Esperanto’s ET-SoC and the
Tensix family from Tenstorrent, with other products
such as Inspire Semiconductor’s Thunderbird having
been announced. However, the major challenge associ-
ated with all of these is that to actually run codes on
them then the developer must learn a new program-
ming model, restructure their codes to map to the
architecture, and leverage the vendor API.

Fortran is the lingua franca of scientific computing,
indeed around 65% of codes running on ARCHER2,
the UK national supercomputer, are written in Fortran
and these account for around 70% of the machine’s
runtime. Ultimately, developers of these high perfor-
mance codes want to run more complex problems at
reduced time to solution, and the specialisation pro-
vided by RISC-V accelerators means that they can
potentially provide this whilst also delivering energy
benefits. However, a major challenge to adoption
of such technologies is the requirement for scientific
programmers to significant restructure their codes,
potentially also having to rewrite them in different
programming languages.

*Corresponding author: Nick Brown

(n.brown@epcc.ed.ac.uk)

RISC-V Summit Europe, Paris, 12-15th May 2025

MLIR

Since it was first merged into mainstream LLVM in
2019, MLIR has become a popular for developing
compilers. Comprising Intermediate Representation
(IR) dialects, and transformations which undertake
optimisations and convert the IR between dialects,
it is possible to mix dialects which are at different
levels of abstraction and progressively lower between
them. Ultimately, MLIR provides reuse of compiler
infrastructure, and via the MLIR framework one can
define their own IR dialects and transformations.

Flang

Flang is the LLVM community’s Fortran compiler and
leverages MLIR by providing it’s own Fortran IR (FIR)
and High Level Fortran IR (HLFIR) dialects. However,
only a subset of MLIR standard dialects are integrated
with Flang, and Flang itself transforms straight from
HLFIR+FIR into LLVM-IR without using any of the
existing MLIR transformations or optimisations.

Conversely, the mlir-opt MLIR driver tool is un-
aware of the Flang dialects and it is not possible to
drive the wide range of MLIR transformations and
optimisations via Flang’s IR. To this end in 7?7 we
developed a transformation pass that lowers Flang’s
HLFIR and FIR dialects into standard MLIR dialects.
The first benefit of this is that the user is then able
to leverage the existing MLIR transformations which
are developed and maintained by a large community,
including many vendor, to generate LLVM-IR. The
second benefit is that it provides a much wider range
of potential target architectures including GPUs.

Flang for RISC-V accelerators

Figure 1 provides an overview of our approach, where
the existing work of [1] lowers Fortran into the stan-
dard dialects and a transformation is provided which
lowers into the specific host and device dialects for

mailto:n.brown@epcc.ed.ac.uk
mailto:n.brown@epcc.ed.ac.uk

| 1
1 1
® : host Lowerin func Lowerin LLVM :Generar{on LLVM
jmmm e ——————— . dialect | Pass dialect | passes dialect | IR
1 1 1
Fortran | | Parsing, lexing 1 ! '
. o CPU cod
source : and some HLFIR | Existing Standard O e oo-- !
code |1 optimisation & FIR | 1 Lowering 7| dialects
1 1
— iFlang !
______________________ '
1
accelerator Optimi accelerator : Printing C/C++
device-side [2RUMIsation,f id with

dialects

dialects

! API

Figure 1: Illustration of our approach lowering Flang to target RISC-V accelerators

the RISC-V accelerator. Some PCle based RISC-V
accelerators already provide an MLIR-based compiler
stack and-so we can then leverage their existing di-
alects in combination with their compilation pipeline
to generate the resulting executables.

However, many of these accelerators either do not
provide an MLIR stack or such a stack is immature.
In such a case, as per Figure 1, we develop a backend
for these accelerators which comprises host and device-
side dialects that map one-to-one to the accelerator
API. A lowering is then developed that converts the
host-side dialect to the func dialect, calling runtime
functions and eventually into LLVM-IR. On the device-
side we develop a printer which accepts the device
specific dialects and standard MLIR dialects, such
as memref for memory management, and this prints
out target code comprising a programming language,
commonly C or C++, calling into the device’s APIL.

Tenstorrent example

Tenstorrent ship RISC-V PCle accelerator cards that
are built upon their Tensix technology. Each Tensix
core comprises five RISC-V cores; one for data move-
ment in, one for data movement out, and three drive
a 16384 wide vector unit. The Wormhole n300, for
example, contains 128 Tensix cores. The decoupling
of data movement from compute makes this a very
interesting potential architecture for HPC, and indeed
early experiments porting a scientific computing work-
load to the Grayskull delivered similar performance to
a 24-core Xeon Platinum CPU but at five times less
energy usage [2]. However, to run codes on this archi-
tecture programmers must learn a new architecture
and significantly recast their applications.

We developed a Tenstorrent specific backend which
comprises a host dialect and three device-side dialects,
one for data movement, one for circular buffers between
RISC-V cores, and one for compute. We also developed
a printer that, from the device-side dialects, generates
C-++ that calls into the Metalium API.

subroutine saxpy(a, x, y, n)

I$omp omp target parallel &
[$ompé& do simd num_ threads(20) simdlen(32) &
doi=1,n
y(i) = axx() + y(i)
end do
I$omp end target parallel do simd
end subroutine

Listing 1: Ezample Fortran code running Single-precision
A times X Plus Y (SAXPY) on the Tenstorrent accelerator
card (argument declarations omitted for brevity)

A question is how, in Figure 1, to lower from the
standard dialects into the device-specific ones that
map to the RISC-V accelerator. The programmer
drives this via OpenMP target offload, and Listing 1
illustrates Single-precision A times X Plus Y (SAXPY)
written in Fortran and offloaded to the Tenstorrent
PCle accelerator via OpenMP. HPC programmers are
already familiar with OpenMP, both for threaded and
GPU programming so it is a natural choice. The code
example in Listing 1 will run the loop in parallel over
two Tensix cores, due to the num_ teams(2), leveraging
the SIMD capabilities of each Tensix core.

Conclusions

We have described offloading Fortran code to RISC-V
based accelerators via Flang. OpenMP provides a
clear abstraction which can be used to drive such an
offloading, and MLIR is a powerful compiler technology
for supporting these accelerators because it enables
the sharing of compiler infrastructure between them.

References

[1] Nick Brown. “Fully integrating the Flang Fortran compiler
with standard MLIR”. In: SC24-W: Workshops of the In-
ternational Conference for High Performance Computing,
Networking, Storage and Analysis. 2024.

[2] Nick Brown. “Accelerating stencils on the Tenstorrent
Grayskull RISC-V accelerator”. In: SC24-W: Workshops
of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 2024.

RISC-V Summit Europe, Paris, 12-15th May 2025

	Introduction
	MLIR
	Flang

	Flang for RISC-V accelerators
	Tenstorrent example

	Conclusions

