
Instruction Fusion Limit Study for RISC-V
Elizabeth Ho1∗, Jonathan Woodruff1

1Department of Computer Science and Technology, University of Cambridge

Abstract

This paper explores the limits of instruction fusion for RISC-V. We characterise instruction fusion rules and
algorithms in a general framework, demonstrating a reduction in effective instruction count by over 50%.

Instruction Fusion

Instruction fusion, otherwise known as macro-op fu-
sion, is common practice in modern x86 and Arm pro-
cessors. They look for opportunities to merge multiple
assembly instructions into a single fused instruction
within the instruction pipeline.

The RISC-V ISA subscribes heavily to the RISC
philosophy of keeping the ISA simple instead of intro-
ducing complex instructions that are important for
one application but might be rarely used in others.
This allows microarchitects to design for RISC-V more
easily, as they have fewer instructions to implement.

However, this flexibility is gained at the expense
of performance. Microarchitects that design more
complex chips might benefit from more complex in-
structions, as they can implement the logic to execute
those without having to fetch and decode multiple
instructions to do the same amount of work.

Instruction fusion is a good way to allow gains in
performance while maintaining the simplicity and flex-
ibility of the ISA. Microarchitects can choose to fuse
certain combinations of instructions into one for their
specific application, giving the performance benefits
of treating the work as a single instruction, while not
bloating the ISA with unnecessary instructions for
other applications [1].

Therefore, we have reason to think that RISC-V is
in a unique position to exploit instruction fusion. Its
core ISA is much simpler than alternatives like ARM
and x86, but its wide range of applications call for a
method to merge complex functionality into a single
instruction.

To prove this, we perform a limit study of instruction
fusion opportunities using instruction trace histograms
of the SPECInt2006 benchmarks.

Related Work

There has been significant previous work to explore
the benefits that instruction fusion brings to RISC-V.

Research in the area was inspired by a 2016 paper
by Celio et al. [1], who demonstrated a 5.4% effective
∗Corresponding author: syh38@cam.ac.uk

instruction count decrease by finding common fusion
pairs in the SPECInt benchmark. Multiple papers
have been published successively about the subject,
which include compiler optimisations [2], fusing non-
contiguous memory instructions [3] and fusion in multi-
core processors [4].

A common theme across all previous work is a focus
on pairwise instruction fusion. We believe that con-
sidering longer sequences of instructions may uncover
further fusion opportunities. The approach of finding
common pairs of instructions is also suboptimal, as
these can change depending on the application as well
as the workload. To the best of our knowledge, no
limit study on instruction fusion has been performed
before.

Fusion Rules

Our fusion framework takes rules to be functions that
take in a block of instructions and return whether this
block is fusable. A wide variety of fusion rules can be
expressed in this form, many more than the common
fusable pairs presented in previous literature.

For our experiments, we chose to generalise rules de-
fined in previous literature [1]. This gives us a practical
idea of what might be feasible with instruction fusion,
while also preserving the spirit of a limit study in con-
sidering broad classes of instructions and arbitrarily
long fusable blocks. We have chosen the following base
fusion rules:

1. an arbitrary sequence of arithmetic instructions
2. an arbitrary sequence of arithmetic instructions

ending in a memory instruction
3. an arbitrary sequence of arithmetic instructions

ending in a branch instruction
4. an arbitrary sequence of arithmetic instructions

ending in a memory or branch instruction

Fusion Algorithm

For each instruction, there could be multiple possible
fusion rules that would be able to fuse it with the
next. To minimise the effective instruction count, we

RISC-V Summit Europe, Paris, 12-15th May 2025 1

mailto:syh38@cam.ac.uk


want to find the rule that fuses the highest number of
instructions into a single fusable block.

To do this, we employ a greedy algorithm that looks
through the instruction histogram in address order,
and, for each instruction,

1. iterates through all the possible rules,
2. stops considering rules that are unable to fuse

this instruction with the block of instructions
that have been fused so far, and,

3. if there are no rules left in consideration, considers
this instruction as the start of a new fusable block.

Fusion Results

We define the fusion rate to be the percentage of in-
structions that are fused away after performing fusion,
and is calculated using the formula:

Fusion Rate =
Original Count − Effective Count

Original Count

where a fused instruction block counts as a single
microarchitectural instruction.

Computing fusion opportunities based on the four
instruction rules detailed above demonstrates that the
potential upside of instruction fusion is very high. As
seen in Figure 1 below, a fusion rate of over 50% can
be achieved in the limit, meaning that the resulting
effective instruction count is less than half of the orig-
inal number of instructions. Fusing pairs alone gives
close to 30% fusion rate, suggesting that instruction
fusion might be able to provide a big benefit without
adding substantial amounts of complexity.

Figure 1: Fusion rate versus maximum fusable length.
Aggregated results across the SPECInt2006 benchmark pro-
grams. The dotted red line shows fusion rate at the limit.

Comparison with Superscalar
Processors

Superscalar processors also try to speed up the instruc-
tion pipeline by executing multiple instructions at the
same time if they are independent from each other.
This functionality can be mimicked using instruction

fusion by specifying fusion rules that only fuse indepen-
dent instructions, i.e. they don’t share any operands.
The results are shown in Figure 2 below.

Perhaps unsurprisingly, the additional restriction
that fused instructions must be independent signifi-
cantly reduces the fusion rate, with a value of 30% in
the limit.

Another result is that fusing pairs of independent
instructions retains most of the benefit of fusing ar-
bitrarily long sequences of them. One explanation
for this is that longer sequences of instructions are
less likely to be independent. This suggests that a
dual-issue core would be able to capture most of the
benefit to running independent instructions in parallel,
not considering instruction reordering.

Figure 2: The same fusion rule, but with an additional
restriction that instructions must be independent on the
right.

Conclusion

Instruction fusion is a promising technique that allows
microarchitects to capture the improved performance
of more complex instructions without bloating the
ISA.

We hope that there will be further work to support
research and implementation of instruction fusion in
RISC-V microarchitectures so that we are able to
capture the potential benefits that instruction fusion
will bring.

References

[1] Christopher Celio et al. The Renewed Case for the Reduced
Instruction Set Computer: Avoiding ISA Bloat with Macro-
Op Fusion for RISC-V. 2016.

[2] Jian-Yu Shen and Shih-Wei Liao. Evaluating and Enhanc-
ing Performance through Macro-Op Fusion Optimization
with RISC-V. 2024.

[3] Sawan Singh et al. Exploring Instruction Fusion Opportu-
nities in General Purpose Processors. 2022.

[4] Yaojie Lu and Sotirios G. Ziavras. Instruction Fusion for
Multiscalar and Many-Core Processors. 2017.

2 RISC-V Summit Europe, Paris, 12-15th May 2025


	Instruction Fusion
	Related Work
	Fusion Rules
	Fusion Algorithm
	Fusion Results
	Comparison with Superscalar Processors
	Conclusion

