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Abstract
In this work, we present the design and evaluation of a Processor Tracing System compliant with the RISC-V
Efficient Trace specification for Instruction Branch Tracing. We integrate our system into the host domain of a
state-of-the-art edge architecture based on CVA6. The proposed Tracing System introduces a total overhead of
9.2% in terms of resource utilization on a Xilinx VCU118 FPGA on the CVA6 subsystem while achieving an
average compression rate of 95.1% on platform-specific tests, compared to tracing each full opcode instruction.

Introduction
In modern computing systems, understanding pro-
gram execution is challenging, as software behavior
and performance can deviate from expectations due
to interactions with other cores, real-time events, sub-
optimal software implementations, or a combination
of these factors. Profiling techniques commonly used
to analyze code and monitor program execution often
involve significant trade-offs between being intrusive,
enabling detailed debugging, or providing only high-
level insight into execution performance [1].

Instruction Branch Tracing (IBT) allows continu-
ous, non-intrusive, fine-grained monitoring of program
execution by tracking program counter (PC) address
deltas induced by special instructions: jump, call, re-
turn, branch, interrupts, or exceptions. RISC-V (RV)
provides a standardized IBT mechanism known as Effi-
cient Trace (E-Trace) [2]. It splits the code into blocks,
where each block is an instruction sequence bounded
by two special instructions, whenever a discontinu-
ity occurs, a dedicated hardware Trace Encoder (TE)
module generates a trace packet. The trace packet
sequence is then processed by a software Trace Decoder
(TD) running on a host machine, which reconstructs
the program execution by integrating the trace packet
data with the program binary.

This work presents three main contributions: i) The
design of a Tracing System (TS) compliant with the
RISC-V E-Trace specification [2]; ii) Its integration
into a modern RISC-V edge platform based on the
CVA6 core [3]; iii) The evaluation of the proposed
implementation in terms of achieved compression rate
and FPGA resource utilization overhead.

Architecture
Figure 1a illustrates the TE architecture. It takes
as input the length of the first instruction in the
block (iaddr), the type and length of the last in-
struction in the block (itype, ilastsize), the block
length (iretire), the privilege level (priv), and in-
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Figure 1: TE architecture and integration inside Shaheen

terrupt/exception details (tval, cause). The TE
consists of three main building blocks, te_filter,
te_priority, and te_packet_emitter, which are
responsible for identifying trace blocks and gener-
ating E-trace packets. Additionally, it includes
three support and configuration modules, namely
te_reg, te_resync_counter, and te_branch_map.
The te_filter determines which information to trace.
Its parameters are stored in the te_reg module which
manages user-configurable settings, including trace
enablement, operating mode selection, and filter defi-
nitions to refine trace scope, and it can be configured
via an APB interface. The te_priority module de-
termines which packet to issue according to E-Trace.
The te_packet_emitter module is responsible for
constructing the trace packets. It receives the packet
type from the te_priority module and collects the
required data from the te_reg module, as well as de-
layed TE inputs from registers. The inputs are delayed
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by up to two cycles, allowing it to access them from
current, previous and next cycle. Tracking disconti-
nuities in these three states is essential to select the
appropriate packet for output. The te_branch_map
module monitors branch instructions and keeps track
of their results. It uses a 31-bit register to store branch
results (the branch map) and a counter. When the
branch map is full, the module requests the generation
of a packet to report branch information, so no branch
data is lost. The te_resync_counter module tracks
the number of packets emitted or clock cycles elapsed.
When the predefined threshold is reached, it triggers a
resynchronization request to the te_priority module.

A key feature of the TE is its ability to support pro-
cessors that can retire multiple instructions per cycle.
This is achieved by replicating block-specific inputs
(iaddr, itype, ilastsize, iretire) and te_filter,
te_priority and te_packet_emitter modules based
on the number and type of discontinuities that can be
retired by the CPU each cycle.

The E-Trace packets generated by the TE are
transferred to an AXI4 encapsulator module via a
valid/ready handshake. Upon receiving the payload,
it generates AXI4 transactions to route trace pack-
ets through the system crossbar and transmit them
over Ethernet. Figure 1b shows the integration of
our design into the host domain of Shaheen [3], a
state-of-the-art RISC-V platform featuring a CVA6
core for autonomous nano-drones. We extended the
CVA6 interface with a Trace Interface Port (TIP) that
generates TE inputs according to E-Trace [2].

Results and Conclusions
We conducted a preliminary evaluation of the TS by
integrating it into Shaheen and implementing it on
an FPGA emulator on the Xilinx VCU118 FPGA.
We evaluated the area overhead and compression rate
achieved using platform-specific benchmarks and re-
gression tests. Figure 2 shows the area overhead in-
troduced by the Tracing System over CVA6. The TS
consumes about 9.2% of the total resources of the
CVA6 subsystem (which includes both the CVA6 core
and the TS) and about 10% of the area compared
to the CVA6 core alone. The TIP and Encapsulator
AXI consume area primarily due to the registers that
implement FIFOs, which are essential for elastic buffer-
ing. In area-constrained scenarios, the TS footprint
can be reduced by instantiating smaller depth FIFOs.
However, decreasing the FIFO depth may result in
packet loss, which could affect the completeness of the
captured trace.

In addition, the modules do not have an impact on
the critical path, so there is no impact on operating
frequency.

Table 1 presents the compression rate achieved by
the tracing system, with an average compression rate
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Encapsulator
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Figure 2: Resources utilization with respect to the CVA6
subsystem

Test name Compression rate %

axi_hyper_fibonacci 99.8
bypass_cva6_dco 99.5
can 87.3
dhrystone 98.4
fp16_matmul 99.7
fp16-vec_matmul 99.7
hello 90.4
kmeans 95.0
l1_test 99.7
llc_spm_test 87.6
mbox_test 91.7
mm 99.7
sb_macl_444 99.7
sb_macl_844 99.7
timer 85.2
Average 95.1

Table 1: Compression rate for each test

of 95.1% compared to tracing each instruction with
its full-opcode allocation.

We developed a RV TS and integrated it into an
edge platform based on CVA6 called Shaheen. For
future work, we plan to conduct more comprehensive
benchmarks, enhance the TE with additional hard-
ware features to achieve higher compression rates and
advanced functional monitoring, and formally release
the implementation open-source. Additionally, the
development of the TD is currently ongoing.
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