

Efficient Trace for RISC-V: Design, Evaluation and Integration in CVA6

Umberto Laghi, Simone Manoni, Emanuele Parisi, Andrea Bartolini Department of Electrical, Electronic, and Information Engineering (DEI) – University of Bologna, Italy

Motivation and Contributions

- Traditional profiling techniques involve significant trade-offs between being intrusive and offer detailed debugging [1]. Instruction Branch Tracing allows continuous profiling by tracking the program counter (PC) address deltas introduced by discontinuities.
- This work presents three main contributions: i) The design of a Tracing System compliant with the RISC-V E-Trace specification [2]; ii) Its integration into a modern RISC-V edge platform based on the CVA6 core
 [3]; iii) The evaluation of the proposed implementation in terms of achieved average compression rate and FPGA resource utilization overhead.

Design and Integration

- The Trace Encoder (TE) has the following internal modules that implements its functionalities: te_filter, te_priority, te_packet_emitter, te_reg, te_branch_map, te_resync_counter.
- To make the TE communicate with a CVA6 core, it is necessary an interface module, the **Trace Interface Port** (TIP) that translates CPU signals into TE intelligible signals. To extract the TE output the packets via **AXI** an **Encansulator** is necessary

via **AXI** an **Encapsulator** is necessary.

Results and Future Developments

- The whole **Tracing System** (TIP, TE, Encapsulator) occupies around **10% of the area occupied by a CVA6 core**. The **average compression rate** w.r.t the uncompressed instruction obtained by the TE is **95.1%**.
- In the future the TE can be extended to **implement other functionalities** to further increase the average compression achieved. Currently, a **Trace Decoder** to reconstruct the trace from the packets emitted by the TE is **in development**.

Test name	Compression rate $\%$
axi_hyper_fibonacci	99.8
bypass_cva6_dco	99.5
can	87.3
dhrystone	98.4
fp16_matmul	99.7
fp16-vec_matmul	99.7
hello	90.4
kmeans	95.0
l1_test	99.7
llc_spm_test	87.6
mbox_test	91.7
mm	99.7
sb_macl_444	99.7
sb_macl_844	99.7
timer	85.2
Average	95.1

Tab. 1: Achieved compression rate in platform specific tests.

Fig. 3: Tracing System area usage w.r.t a CVA6 core.

[1] Charlie Curtsinger et al. "Coz: Finding code that counts with causal profiling". In: Proceedings of the 25th Symposium on Operating Systems Principles (2015).
[2] Gajinder Panesar et al. "Efficient Trace for RISCV". In: Siemens, ver. 1.1. 3-Frozen (2022).
[3] Luca Valente et al. "A Heterogeneous RISC V Pased SoC for Secure Nano-LIAV Navigation". In: JEEE Transactions on Circuits and Systems I: Pogular Paners (2022).

[3] Luca Valente et al. "A Heterogeneous RISC-V Based SoC for Secure Nano-UAV Navigation". In: IEEE Transactions on Circuits and Systems I: Regular Papers (2024).

