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Abstract

Seal5 provides the efficient transformation of custom RISC-V instructions defined in CoreDSL into the LLVM
toolchain and the ETISS instruction set simulator. This paper evaluates this approach by implementing an
extension for the ChaCha20 cipher, achieving a substantial performance improvement in the test case without
any change to its source code and a tiny increase in core size. The results demonstrate the potential of this
approach for rapid exploration of customising a RISC-V-based product through extension instructions.

Introduction

Edge computing has increased the importance of
quickly adapting architectures for diverse properties
such as low-latency, low-power, high-throughput, digi-
tal sovereignty, reduced infrastructure costs, and real-
time decision-making, in applications ranging from
low-cost I.o.T. devices to autonomous systems. Be-
cause the RISC-V architecture is explicitly based upon
composing the ISA from both standard and custom
instruction sets it is perfectly suited for rapid proto-
typing of edge computing hardware. In contrast, the
existing compiler toolchains lack convenient mecha-
nisms for incorporating custom extensions.

This paper focuses on exploiting that RISC-V exten-
sibility by using Seal5 for rapidly exploring the merits
of using custom instructions. An extensible compiler
toolchain for RISC-V is presented, based upon the
already well-accepted LLVM, which is a rather more
capable evolution of what was earlier introduced [1].
Instructions to accelerate a cryptographic cipher are
presented with the improvements in code size and
speed achieved in a test application, which illustrates
that this method provides a productive and fruitful
development pathway.

Background

The approach taken in this work uses a high-level de-
scription of an extension ISA to automatically modify
a compiler toolchain to both provide easy access to
those instructions expose and also to automatically ex-
ploit them. Because the modification process is quick
it allows for easy iteration of the ISA design, enabling
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cheaper and deeper design exploration.
The extension ISA is described in CoreDSL [2],

a domain-specific language for modeling processor
cores with ’C’-like syntax. This is transformed by
the Seal5 [3] tooling into patches for both the LLVM
toolchain [4] (including the clang compiler) and the
ETISS [5] instruction set simulator. Having an ISS
immediately available for an extension enables both
validation of that it functions correctly and provides
insight into its actual merits.

A previous implementation of this approach [6] had
the limitation that the instructions added by an exten-
sion were supported for direct invocation from compiler
intrinsic functions or assembly language. The Seal5
framework also generates selection patterns, enabling
the compiler to automatically exploit the instructions.

Methods

The tooling described in the previous section has al-
ready been detailed in [1], however the 64-bit MAC
used as the sample extension in [6] provided a rather
limited demonstration of the approach. The instruc-
tions provided did not fit the common RISC-V pat-
terns, potentially increasing the cost of implementation
on a core and restricting its use to code specifically
written for it. For real applications users not needing
a 64-bit MAC on a 32-bit platform would prefer the
pre-existing xcorev.mac instruction.

A more motivating example is found with in-
structions to accelerate the ChaCha20 cipher1[8].
ChaCha20 generates the blocks of pseudo-random
bytes that are used in ciphering operations by repeat-
edly shuffling the contents of a 64-byte initialization
vector (IV) with ADD, XOR, and bitwise-rotation in-

1 This use case was inspired by earlier discussions with Imperas,
who used it as an sample in [7]
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structions . It provides scope for a small extension to
have a meaningful impact and moreover is not already
directly supported through the RISC-V cryptography
extensions.

The central transformation of ChaCha20 is the
"quarter round", detailed here in ’C’-like pseudo-code
where <<< denotes a leftward bit rotation and the
variables are 32-bit words from specific locations in
the IV:

a += b; d ^= a; d <<<= 16;
c += d; b ^= c; b <<<= 12;
a += b; d ^= a; d <<<= 8;
c += d; b ^= c; b <<<= 7;

The pairing of XOR and a fixed-length rotation
presents the possibility of combining them into custom
operations, as seen written in a fragment of CoreDSL
for the first such pairing:

if (rd != 0) {
unsigned<32> xor = X[rs1] ^ X[rs2];
X[rd] = (xor << 16) | (xor >> 16);

}

The remaining three pairings were described by sim-
ilar CoreDSL. The LLVM toolchain and ETISS were
then built with support for the "xchacha20" extension.

A straightforward implementation of the ChaCha20
quarter_round() written in ’C’ was used to evalu-
ate both the correctness and performance of the re-
sulting code. It was exercised through the complete
ChaCha20 transformation of 80 quarter rounds, con-
firming its correct function by generating a defined test
sequence. When compiled for a simple rv32i core the
quarter_round() function executed 1847 instructions,
whereas when built for the ChaCha20 extension only
887 instructions were executed.

As a comparison quarter_round() were also imple-
mented by explicitly invoking the extension instruc-
tions as intrinsic functions. This also executed 887
instructions, demonstrating that the LLVM selection
patterns generated by Seal5 enabled clang to optimally
exploit the extension.

Although the focus of this work has been soft-
ware simulation a single experiment of integrating the
ChaCha20 extension into a core was performed. This
used the Longnail High Level Synthesis tooling [9] to
generate a hardware module from the same CoreDSL
specification, before integrating that into a 4-stage
version of the VexRISCV core. It was observed that
the extension only makes up approximately 1% of the
whole core area, which gives feedback on the cost/ben-
efit considerations.

For rapid development it is important that the tools
are responsive. This work was performed on a modest
32-core server, where, after the initial configuration
and build, subsequent rebuilds took 5-10 minutes. The
hardware synthesis flow added less than 5 minutes.

Discussion

The experimental results demonstrate the potential of
Seal5 to exploit custom RISC-V extensions with little
effort on the software developer’s part. In a well-suited
case such as the ChaCha20 extension presented here
the performance is gained with no source code change;
in other cases the presence of intrinsic functions and
integrated assembly reduces the developer burden.

In conclusion, this work highlights the importance
of RISC-V’s extensibility in modern edge computing
design spaces, with a focus on hardware-software co-
design and compiler-supported extensions. This may
be of particular value in edge computing where a
multitude of designs optimized for specific applications
is expected.
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