
Prototyping custom RISC-V instructions with Seal5 and CoreDSL
Jan Schlamelcher, Thomas Goodfellow, Bewoayia Kebianyor, Gregor Nitsche, Philipp van Kempen and Kim Grüttner

MSc. Jan Schlamelcher | System Evolution and Operation (SE-EVO)

Telefon +49 441 770507 357 | Jan.Schlamelcher@dlr.de

DLR.de | Institut Systems Engineering für zukünftige Mobilität

Goal
Evaluating a prototyping flow using Seal5 for RISC-V custom instructions

Results

This work has been developed in the ZuSE project Scale4Edge. Scale4Edge is 
funded by the German ministry of education and research (BMBF) (reference 
number 16ME0465).

Method

… then build & execute the ChaCha20 test case with these generated products

Describe the custom XOR+ROL instructions in CoreDSL and from that generate a compiler toolchain, 
instruction simulator, and CPU that all support the new instructions

ChaCha20 Quarter Round

a += b; d ^= a; d <<<= 16;
c += d; b ^= c; b <<<= 12;
a += b; d ^= a; d <<<= 8;
c += d; b ^= c; b <<<= 7; 

Test case: ChaCha20 Cipher

• Generates blocks of pseudo-random bytes by repeated use of 
cheap ALU operations

• Central "Quarter Round”transformation performed 80 times 
for each block, each with 4 sets of ADD+XOR+ROL operations

• No ROL instruction in the base RV32I ISA means each set uses
5 instructions

• Scope for 4 customized XOR+ROL instructions

0

500

1000

1500

2000

Base RV32I Custom XOR+ROL intrinsic

1847

887 887

Cycle Count (ETISS) Simulator Evaluation

• Seal5-generated compiler automatically
exploits new XOR+ROL, eliminating three
instructions from each operation set

• This optimization provides a 52% speed-
up to the entire cipher block generation

• Attempting manual optimization through
instrinsic functions gave no further speedup
– instruction selection works well!

• Generating an extended compiler takes only ~10 minutes (on a 32 core server)
• Adding the XOR+ROL instructions to the VexRISCV core increases its size by only ~1%
• Hardware synthesis takes ~5 minutes

CoreDSL for a combined XOR+ROL

if (rd != 0) {

unsigned<32> xor = X[rs1] ^ X[rs2];

X[rd] = (xor << 16) | (xor >> 16);

}

VexRISCV
RISC-V CPU

ETISS
Instruction Set 

Simulator

LLVM
Compiler toolchain

Seal5

M2-ISA-R

Longnail

mailto:Kim.Gruettner@dlr.de
https://www.dlr.de/DE/Home/home_node.html
https://www.dlr.de/se

